
UNIT -1 

COMPUTER SYSTEM AND OPERATING SYSTEM OVERVIEW 
 

OVER VIEW OF OPERATING SYSTEM  

 

What is an Operating System?  

A program that acts as an intermediary between a user of a computer and the computer hardware  

Operating system goals:  

• Execute user programs and make solving user problems easier  

• Make the computer system convenient to use  

• Use the computer hardware in an efficient manner  

 

Computer System Structure  

Computer system can be divided into four components  

• Hardware – provides basic computing resources  

➢ CPU, memory, I/O devices  

• Operating system  

➢ Controls and coordinates use of hardware among various applications and users  

• Application programs – define the ways in which the system resources are used to solve 

the computing problems of the users  

➢ Word processors, compilers, web browsers, database systems, video games  

• Users  

➢ People, machines, other computers  

Four Components of a Computer System  
 

 
 

Operating System Definition  

 

• OS is a resource allocator  

• Manages all resources  

• Decides between conflicting requests for efficient and fair resource use  

• OS is a control program  



• Controls execution of programs to prevent errors and improper use of the computer  

• No universally accepted definition  

• Everything a vendor ships when you order an operating system” is good approximation  

But varies wildly. 

• “The one program running at all times on the computer” is the kernel. Everything else is 

either a system program (ships with the operating system) or an application program  

 

Computer Startup  

• bootstrap program is loaded at power-up or reboot  

• Typically stored in ROM or EPROM, generally known as firmware  

• Initializes all aspects of system  

• Loads operating system kernel and starts execution  

 

Computer System Organization  

• Computer-system operation  

• One or more CPUs, device controllers connect through common bus providing access to 

shared memory  

• Concurrent execution of CPUs and devices competing for memory cycles  
 

 

Computer-System Operation  

 

• I/O devices and the CPU can execute concurrently  

• Each device controller is in charge of a particular device type  

• Each device controller has a local buffer  

• CPU moves data from/to main memory to/from local buffers  

• I/O is from the device to local buffer of controller  

• Device controller informs CPU that it has finished its operation by causing An interrupt  

 
 



 

Common Functions of Interrupts  

 

• Interrupt transfers control to the interrupt service routine generally, through the interrupt 

vector, which contains the addresses of all the service routines  

• Interrupt architecture must save the address of the interrupted instruction  

• Incoming interrupts are disabled while another interrupt is being processed to prevent a 

lost interrupt. A trap is a software-generated interrupt caused either by an error or a user 

request  

• An operating system is interrupt driven  

 

Interrupt Handling  

 

• The operating system preserves the state of the CPU by storing registers and the program 

counter  

• Determines which type of interrupt has occurred:  

• polling  

• vectored interrupt system  

• Separate segments of code determine what action should be taken for each type of 

interrupt  

 

Interrupt Timeline 

 

 

 

 

 

 

 



I/O Structure  

 

• After I/O starts, control returns to user program only upon I/O completion  

• Wait instruction idles the CPU until the next interrupt  

• Wait loop (contention for memory access)  

• At most one I/O request is outstanding at a time, no simultaneous I/O processing  

• After I/O starts, control returns to user program without waiting for I/O completion  

• System call – request to the operating system to allow user to wait for I/O completion  

• Device-status table contains entry for each I/O device indicating its type, address, and 

state  

• Operating system indexes into I/O device table to determine device status and to modify 

table entry to include interrupt  
 

Direct Memory Access Structure  

 

• Used for high-speed I/O devices able to transmit information at close to memory speeds  

• Device controller transfers blocks of data from buffer storage directly to main memory 

without CPU intervention  

• Only one interrupt is generated per block, rather than the one interrupt per byte  

 

Storage Structure  

 

• Main memory – only large storage media that the CPU can access directly  

• Secondary storage – extension of main memory that provides large nonvolatile storage 

capacity  

• Magnetic disks – rigid metal or glass platters covered with magnetic recording material  

• Disk surface is logically divided into tracks, which are subdivided into sectors  

• The disk controller determines the logical interaction between the device and the 

computer  

 

Storage Hierarchy  

 

• Storage systems organized in hierarchy  

• Speed  

• Cost  

• Volatility  

 

Caching – copying information into faster storage system; main memory can be viewed as a last 

cache for secondary storage 

 



 

Caching  

• Important principle, performed at many levels in a computer (in hardware, operating 

system, software)  

• Information in use copied from slower to faster storage temporarily  

• Faster storage (cache) checked first to determine if information is there  

• If it is, information used directly from the cache (fast)  

• If not, data copied to cache and used there  

• Cache smaller than storage being cached  

• Cache management important design problem  

• Cache size and replacement policy  
 

Computer-System Architecture  

 

• Most systems use a single general-purpose processor (PDAs through mainframes)  

• Most systems have special-purpose processors as well  

• Multiprocessors systems growing in use and importance  

• Also known as parallel systems, tightly-coupled systems  

 

Advantages include  

1. Increased throughput  

2. Economy of scale  

3. Increased reliability – graceful degradation or fault tolerance  

Two types  

1. Asymmetric Multiprocessing  

2. Symmetric Multiprocessing 



 

 

 

 

 

 

 

 

 



A Dual-Core Design  

 

 

 

 

 

 

 

 

 

 

 

Clustered Systems  

 

• Like multiprocessor systems, but multiple systems working together  

• Usually sharing storage via a storage-area network (SAN)  

• Provides a high-availability service which survives failures  

➢ Asymmetric clustering has one machine in hot-standby mode  

➢ Symmetric clustering has multiple nodes running applications, monitoring each other  

• Some clusters are for high-performance computing (HPC)  

➢ Applications must be written to use parallelization 

Operating System Structure  

 

• Multiprogramming needed for efficiency  

• Single user cannot keep CPU and I/O devices busy at all times  

• Multiprogramming organizes jobs (code and data) so CPU always has one to Execute  

• A subset of total jobs in system is kept in memory  

• One job selected and run via job scheduling  

• When it has to wait (for I/O for example), OS switches to another job  

• Timesharing (multitasking) is logical extension in which CPU switches jobs so 

frequently that users can interact with each job while it is running, creating interactive 

computing  

• Response time should be < 1 second  

• Each user has at least one program executing in memory [process  

• If several jobs ready to run at the same time [ CPU scheduling  



• If processes don’t fit in memory, swapping moves them in and out to run  

 

Virtual memory allows execution of processes not completely in memory  

Memory Layout for Multi programmed System 

 

 

 

 

 

 

 

 

Operating-System Operations  

 

• Interrupt driven by hardware  

• Software error or request creates exception or trap  

• Division by zero, request for operating system service  

• Other process problems include infinite loop, processes modifying each Other or the 

operating system  

• Dual-mode operation allows OS to protect itself and other system components  

• User mode and kernel mode  

• Mode bit provided by hardware  

• Provides ability to distinguish when system is running user code or kernel code  

• Some instructions designated as privileged, only executable in kernel mode  

• System call changes mode to kernel, return from call resets it to user 

Transition from User to Kernel Mode  

 

• Timer to prevent infinite loop / process hogging resources  

• Set interrupt after specific period  

• Operating system decrements counter  

• When counter zero generate an interrupt  

• Set up before scheduling process to regain control or terminate program that exceeds 

allotted time  



 

 

OPERATING SYSTEM FUNCTIONS  

 

Process Management  

 

• A process is a program in execution. It is a unit of work within the system. Program is a 

passive entity, process is an active entity.  

• Process needs resources to accomplish its task  

• CPU, memory, I/O, files  

• Initialization data  

• Process termination requires reclaim of any reusable resources  

• Single-threaded process has one program counter specifying location of next instruction 

to execute  

• Process executes instructions sequentially, one at a time, until completion  

• Multi-threaded process has one program counter per thread  

• Typically system has many processes, some user, some operating system running 

concurrently on one or more CPUs  

• Concurrency by multiplexing the CPUs among the processes / threads  
 

Process Management Activities  

 

• The operating system is responsible for the following activities in connection with 

process management:  

• Creating and deleting both user and system processes  

• Suspending and resuming processes  

• Providing mechanisms for process synchronization  

• Providing mechanisms for process communication  

• Providing mechanisms for deadlock handling  

 

Memory Management  

 

• All data in memory before and after processing  

• All instructions in memory in order to execute  



• Memory management determines what is in memory when  

• Optimizing CPU utilization and computer response to users  

 

Memory management activities  

 

• Keeping track of which parts of memory are currently being used and by whom  

• Deciding which processes (or parts thereof) and data to move into and out of memory  

• Allocating and de-allocating memory space as needed  

 

Storage Management  

 

• OS provides uniform, logical view of information storage  

• Abstracts physical properties to logical storage unit - file  

• Each medium is controlled by device (i.e., disk drive, tape drive)  

• Varying properties include access speed, capacity, data-transfer rate, access method 

(sequential or random)  

• File-System management  

• Files usually organized into directories  

• Access control on most systems to determine who can access what  

 

OS activities include 

 

• Creating and deleting files and directories  

• Primitives to manipulate files and dirs  

• Mapping files onto secondary storage  

• Backup files onto stable (non-volatile) storage media  

 

Mass-Storage Management  

 

• Usually disks used to store data that does not fit in main memory or data that must be 

kept for a “long” period of time  

• Proper management is of central importance  

• Entire speed of computer operation hinges on disk subsystem and its algorithms  

 

MASS STORAGE activities  

• Free-space management  

• Storage allocation  

• Disk scheduling  

• Some storage need not be fast  

• Tertiary storage includes optical storage, magnetic tape  

• Still must be managed  

• Varies between WORM (write-once, read-many-times) and RW (read-write)  



 

Performance of Various Levels of Storage 

 

Migration of Integer A from Disk to Register  

 

• Multitasking environments must be careful to use most recent value, no matter where it is 

stored in the storage hierarchy  

 

• Multiprocessor environment must provide cache coherency in hardware such that all 

CPUs have the most recent value in their cache  

• Distributed environment situation even more complex  

• Several copies of a datum can exist  
 

I/O Subsystem  

 

• One purpose of OS is to hide peculiarities of hardware devices from the user  

• I/O subsystem responsible for  

• Memory management of I/O including buffering (storing data temporarily while it is 

being transferred), caching (storing parts of data in faster storage for performance), 

spooling (the overlapping of output of one job with input of other jobs)  

• General device-driver interface  

• Drivers for specific hardware devices  

 
 

 

 



Protection and Security  

 

Protection – any mechanism for controlling access of processes or users to resources defined by 

the OS  

Security – defense of the system against internal and external attacks  

• Huge range, including denial-of-service, worms, viruses, identity theft, theft of service  

• Systems generally first distinguish among users, to determine who can do what  

• User identities (user IDs, security IDs) include name and associated number, one per 

user  

• User ID then associated with all files, processes of that user to determine access control  

• Group identifier (group ID) allows set of users to be defined and controls managed, then 

also associated with each process, file  

• Privilege escalation allows user to change to effective ID with more rights  
 

DISTRIBUTED SYSTEMS  

Computing Environments  

Traditional computer  

 

• Blurring over time  

• Office environment  

➢ PCs connected to a network, terminals attached to mainframe or minicomputers 

providing batch and timesharing  

➢ Now portals allowing networked and remote systems access to same resources  

• Home networks  

➢ Used to be single system, then modems  

➢ Now firewalled, networked  

• Client-Server Computing  

• Dept. of Computer Science and Engineering Page 12  
• Dumb terminals supplanted by smart PCs  

• Many systems now servers, responding to requests generated by clients  

➢ Compute-server provides an interface to client to request services (i.e. database)  

➢ File-server provides interface for clients to store and retrieve files 

 

 

 

 



Peer-to-Peer Computing  

 

• Another model of distributed system  

• P2P does not distinguish clients and servers  

• Instead all nodes are considered peers  

• May each act as client, server or both  

• Node must join P2P network  

➢ Registers its service with central lookup service on network, or  

➢ Broadcast request for service and respond to requests for service via discovery 

protocol  

• Examples include Napster and Gnutella  

 

Web-Based Computing 

  

• Web has become ubiquitous  

• PCs most prevalent devices  

• More devices becoming networked to allow web access  

• New category of devices to manage web traffic among similar servers: load balancers  

• Use of operating systems like Windows 95, client-side, have evolved into Linux and 

Windows XP, which can be clients and servers  

 

Open-Source Operating Systems  

 

• Operating systems made available in source-code format rather than just binary closed-

source  

• Counter to the copy protection and Digital Rights Management (DRM) movement  

• Started by Free Software Foundation (FSF), which has “copyleft” GNU Public License 

(GPL)  

• Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and Sun 

Solaris  

 

Operating System Services  

 

• One set of operating-system services provides functions that are helpful to the user:  

• User interface - Almost all operating systems have a user interface (UI)  

➢ Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch  

• Program execution - The system must be able to load a program into memory and to run 

that program, end execution, either normally or abnormally (indicating error)  

• I/O operations - A running program may require I/O, which may involve a file or an I/O 

device  

 

• File-system manipulation - The file system is of particular interest. Obviously, programs 

need to read and write files and directories, create and delete them, search them, list file 

Information, permission management.  

 



 

 

 

A View of Operating System Services 

Operating System Services  

 

• One set of operating-system services provides functions that are helpful to the user  

 

• Communications – Processes may exchange information, on the same computer or 

between computers  

• over a network Communications may be via shared memory or through message passing 

(packets moved by the OS)  

• Error detection – OS needs to be constantly aware of possible errors May occur in the 

CPU and memory hardware, in I/O devices, in user program For each type of error, OS 

should take the appropriate action to ensure correct and consistent computing Debugging 

facilities can greatly enhance the user’s and programmer’s abilities to efficiently use the 

system  

• Another set of OS functions exists for ensuring the efficient operation of the system itself 

via resource sharing  

• Resource allocation - When multiple users or multiple jobs running concurrently, 

resources must be allocated to each of them Many types of resources - Some (such as 

CPU cycles, main memory, and file storage) may have special allocation code, others 

(such as I/O devices) may have general request and release code  

• Accounting - To keep track of which users use how much and what kinds of computer 

resources  

• Protection and security - The owners of information stored in a multiuser or networked 

computer system may want to control use of that information, concurrent processes 

should not interfere with each other  

• Protection involves ensuring that all access to system resources is controlled  



• Security of the system from outsiders requires user authentication, extends to defending 

external I/O devices from invalid access attempts If a system is to be protected and 

secure, precautions must be instituted throughout it. A chain is only as strong as its 

weakest link.  

User Operating System Interface - CLI  

 

• Command Line Interface (CLI) or command interpreter allows direct command entry  

➢ Sometimes implemented in kernel, sometimes by systems program  

➢ Sometimes multiple flavors implemented – shells  

➢ Primarily fetches a command from user and executes it 

 

• Sometimes commands built-in, sometimes just names of programs  

• If the latter, adding new features doesn’t require shell modification  

 

User Operating System Interface – GUI  

 

• User-friendly desktop metaphor interface  

• Usually mouse, keyboard, and monitor  

• Icons represent files, programs, actions, etc  

• Various mouse buttons over objects in the interface cause various actions (provide 

information, options, execute function, open directory (known as a folder)  

• Invented at Xerox PARC  

• Many systems now include both CLI and GUI interfaces  

• Microsoft Windows is GUI with CLI “command” shell  

• Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells 

available  

• Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)  

Bourne Shell Command Interpreter  

 



The Mac OS X GUI

 

System Calls 

• Programming interface to the services provided by the OS  

• Typically written in a high-level language (C or C++)  

• Mostly accessed by programs via a high-level Application Program Interface (API) rather 

than direct system call usenThree most common APIs are Win32 API for Windows, 

POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, 

and Mac OS X), and Java API for the Java virtual machine (JVM)  

• Why use APIs rather than system calls?(Note that the system-call names used throughout 

this text are generic)  
 

Example of System Calls 

 

 



Example of Standard API  

Consider the ReadFile() function in the  

Win32 API—a function for reading from a file 

 

A description of the parameters passed to ReadFile()  

 

• HANDLE file—the file to be read  

• LPVOID buffer—a buffer where the data will be read into and written from  

• DWORD bytesToRead—the number of bytes to be read into the buffer  

• LPDWORD bytesRead—the number of bytes read during the last read  

• LPOVERLAPPED ovl—indicates if overlapped I/O is being used 

 

System Call Implementation 

  

• Typically, a number associated with each system call  

• System-call interface maintains a table indexed according to these  

• Numbers  

• The system call interface invokes intended system call in OS kernel and returns status of 

the system call and any return values  

• The caller need know nothing about how the system call is implemented  

• Just needs to obey API and understand what OS will do as a result call  

• Most details of OS interface hidden from programmer by API  

• Managed by run-time support library (set of functions built into libraries included with 

compiler) 

 

 

 

 

 



 

API – System Call – OS Relationship 

 

 

 

 

 

 

 

 

 

 

 

System Call Parameter Passing  

• Often, more information is required than simply identity of desired system call  

• Exact type and amount of information vary according to OS and call  

• Three general methods used to pass parameters to the OS  

• Simplest: pass the parameters in registers  

• In some cases, may be more parameters than registers  

• Parameters stored in a block, or table, in memory, and address of block passed as a 

parameter in a register  

➢ This approach taken by Linux and Solaris  

• Parameters placed, or pushed, onto the stack by the program and popped off the stack by 

the operating system  

• Block and stack methods do not limit the number or length of parameters being passed  

 

 

 

 

 

 



Parameter Passing via Table 

 

 

 

Types of System Calls  

 

• Process control  

• File management  

• Device management  

• Information maintenance  

• Communications  

• Protection  
 

Examples of Windows and Unix System Calls 

 



MS-DOS execution 

 

(a) 

At 

system startup       (b) running a program 

FreeBSD Running Multiple Programs 

 

 

 

 

 

 

 

 

 

System Programs  

System programs provide a convenient environment for program development and execution. 

The can be divided into:  

• File manipulation  

• Status information  

• File modification  

• Programming language support  

• Program loading and execution  

• Communications  

• Application programs  



 

Most users’ view of the operation system is defined by system programs, not the actual system 

calls  

• Provide a convenient environment for program development and execution  

• Some of them are simply user interfaces to system calls; others are considerably more 

complex  

• File management - Create, delete, copy, rename, print, dump, list, and generally 

manipulate files and directories  

• Status information  

• Some ask the system for info - date, time, amount of available memory, disk space, 

number of users  

• Others provide detailed performance, logging, and debugging information  

• Typically, these programs format and print the output to the terminal or other output 

devices  

• Some systems implement a registry - used to store and retrieve configuration information  

File modification  

• Text editors to create and modify files  

• Special commands to search contents of files or perform transformations of the text  

• Programming-language support - Compilers, assemblers, debuggers and interpreters 

sometimes provided  

• Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, 

and overlay-loaders, debugging systems for higher-level and machine language  

• Communications - Provide the mechanism for creating virtual connections among 

processes, users, and computer systems  

• Allow users to send messages to one another’s screens, browse web pages, send 

electronic-mail messages, log in remotely, transfer files from one machine to another  
 

Operating System Design and Implementation 

• Design and Implementation of OS not “solvable”, but some approaches have proven 

successful  

• Internal structure of different Operating Systems can vary widely  

• Start by defining goals and specifications  

• Affected by choice of hardware, type of system  

• User goals and System goals  

• User goals – operating system should be convenient to use, easy to learn, reliable, safe, 

and fast  

• System goals – operating system should be easy to design, implement, and maintain, as 

well as flexible, reliable, error-free, and efficient  

• Important principle to separate  

• Policy: What will be done? Mechanism: How to do it?  

• Mechanisms determine how to do something, policies decide what will be done  

• The separation of policy from mechanism is a very important principle, it allows 

maximum flexibility if policy decisions are to be changed later  



Simple Structure  

 

• MS-DOS – written to provide the most functionality in the least space  

• Not divided into modules  

• Although MS-DOS has some structure, its interfaces and levels of Functionality are not 

well separated  

 

MS-DOS Layer Structure 

 

 

 

 

 

 

Layered Approach 

• The operating system is divided into a number of layers (levels), each built on top of 

lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user 

interface.  

• With modularity, layers are selected such that each uses functions (operations) and 

services of only lower-level layers  

 

Traditional UNIX System Structure 
 

 
 

 



UNIX  

 

• UNIX – limited by hardware functionality, the original UNIX operating system had limited 

structuring. The UNIX OS consists of two separable parts  

• Systems programs  

• The kernel  

➢ Consists of everything below the system-call interface and above the physical 

hardware  

➢ Provides the file system, CPU scheduling, memory management, and other operating-

system functions; a large number of functions for one level 

 

Layered Operating System 
 

 

 

 

 

 

 

 

 

 

 

Micro kernel System Structure  

 

• Moves as much from the kernel into “user” space  

• Communication takes place between user modules using message passing  

• Benefits:  

• Easier to extend a microkernel  

• Easier to port the operating system to new architectures  

• More reliable (less code is running in kernel mode)  

• More secure  

• Detriments:  

• Performance overhead of user space to kernel space communication  
 

Mac OS X Structure 
 

 

 

 

 

 

 

 

 

 

 

 



 

Modules  

 

• Most modern operating systems implement kernel modules  

• Uses object-oriented approach  

• Each core component is separate  

• Each talks to the others over known interfaces  

• Each is loadable as needed within the kernel  

• Overall, similar to layers but with more  
 

 

Solaris Modular Approach 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Virtual Machines  

 

• A virtual machine takes the layered approach to its logical conclusion. It treats hardware 

and the operating system kernel as though they were all hardware  

• A virtual machine provides an interface identical to the underlying bare hardware  

• The operating system host creates the illusion that a process has its own processor and 

(virtual memory)  

• Each guest provided with a (virtual) copy of underlying computer  
 

Virtual Machines History and Benefits  

 

• First appeared commercially in IBM mainframes in 1972  

• Fundamentally, multiple execution environments (different operating systems) can share 

the same hardware  

• Protect from each other  

• Some sharing of file can be permitted, controlled  

• Commutate with each other, other physical systems via networking  

• Useful for development, testing  



• Consolidation of many low-resource use systems onto fewer busier systems  

• “Open Virtual Machine Format”, standard format of virtual machines, allows a VM to 

run within many different virtual machine (host) platforms  

 
 

 

 

 

 

 

 

 

 

Para-

Virtualization  

 

• Presents guest with system similar but not identical to hardware  

• Guest must be modified to run on par virtualized hardware  

• Guest can be an OS, or in the case of Solaris 10 applications running in containers  
 

Solaris 10 with Two Containers 
 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

VMware Architecture 

 
 

 

The Java Virtual Machine 

 

 
 

 

Operating-System Debugging 

 

• Debugging is finding and fixing errors, or bugs  

• OS generate log files containing error information  

• Failure of an application can generate core dump file capturing memory of the process  

• Operating system failure can generate crash dump file containing kernel memory  

• Beyond crashes, performance tuning can optimize system performance  



• Kernighan’s Law: “Debugging is twice as hard as writing the code in the rst place. 

Therefore, if you write the code as cleverly as possible, you are, by definition, not smart 

enough to debug it.”  

• DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production 

systems  

• Probes fire when code is executed, capturing state data and sending it to consumers of 

those probes  
 

 

Solaris 10 dtrace Following System Call 
 

 

Operating System Generation 

  

• Operating systems are designed to run on any of a class of machines; the system must be 

configured for each specific computer site  

• SYSGEN program obtains information concerning the specific configuration of the 

hardware system  

• Booting – starting a computer by loading the kernel  

• Bootstrap program – code stored in ROM that is able to locate the kernel, load it into 

memory, and start its execution  

 

System Boot  

 

• Operating system must be made available to hardware so hardware can start it  

• Small piece of code – bootstrap loader, locates the kernel, loads it into memory, and 

starts it  

• Sometimes two-step process where boot block at fixed location loads bootstrap loader  

• When power initialized on system, execution starts at a fixed memory location Firmware 

used to hold initial boot code  
 



UNIT -2 

 

PROCESS MANAGEMENT 

 
Process Concept  

 

• An operating system executes a variety of programs:  

• Batch system – jobs  

• Time-shared systems – user programs or tasks  

• Textbook uses the terms job and process almost interchangeably  

 
Process – a program in execution; process execution must progress in sequential fashion  

A process includes:  

• program counter  

• stack  

• data section  

 

Process in Memory 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Process State  

 

As a process executes, it changes state  

• new: The process is being created  

• running: Instructions are being executed  

• waiting: The process is waiting for some event to occur  

• ready: The process is waiting to be assigned to a processor  

• terminated: The process has finished execution  

 



Diagram of Process State 

 

 

 

 

Process Control Block (PCB)  

 

Information associated with each process  

• Process state  

• Program counter  

• CPU registers  

• CPU scheduling information  

• Memory-management information  

• Accounting information  

• I/O status information  
 

 

CPU Switch From Process to Process 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Process Scheduling Queues  



 

• Job queue – set of all processes in the system  

• Ready queue – set of all processes residing in main memory, ready and waiting to 

execute  

• Device queues – set of processes waiting for an I/O device  

• Processes migrate among the various queues  

 
Ready Queue and Various I/O Device Queues 
 

 

Representation of Process Scheduling 

 
 

Schedulers  

 



• Long-term scheduler (or job scheduler) – selects which processes should be brought 

into the ready queue  

• Short-term scheduler (or CPU scheduler) – selects which process should be executed 

next and allocates CPU  

 

Addition of Medium Term Scheduling 
 

 
 

• Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)  

• Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)  

• The long-term scheduler controls the degree of multiprogramming  

• Processes can be described as either:  

• I/O-bound process – spends more time doing I/O than computations, many short CPU 

bursts  

• CPU-bound process – spends more time doing computations; few very long CPU bursts  

 
Context Switch  

 

• When CPU switches to another process, the system must save the state of the old process 

and load the saved state for the new process via a context switch  

• Context of a process represented in the PCB  

• Context-switch time is overhead; the system does no useful work while switching  

• Time dependent on hardware support  

 

Process Creation  

 

• Parent process create children processes, which, in turn create other processes, forming 

a tree of processes  

• Generally, process identified and managed via a process identifier (pid)  

• Resource sharing  

• Parent and children share all resources  



• Children share subset of parent’s resources  

• Parent and child share no resources  

• Execution  

• Parent and children execute concurrently  

• Parent waits until children terminate  

• Address space  

• Child duplicate of parent  

• Child has a program loaded into it  

• UNIX examples  

• fork system call creates new process  

• exec system call used after a fork to replace the process’ memory space with a new 

program  

 
Process Creation 
 

 

 

 

C Program Forking Separate Process 

 

int main()  

{  

pid_t pid;  

/* fork another process */  

pid = fork();  

if (pid < 0) { /* error occurred */  

fprintf(stderr, "Fork Failed");  

exit(-1);  

}  

else if (pid == 0) { /* child process */  

execlp("/bin/ls", "ls", NULL);  

}  

else { /* parent process */  

/* parent will wait for the child to complete */  

wait (NULL);  

printf ("Child Complete");  

exit(0);  



}  

} 

 

A tree of processes on a typical Solaris 

 
 

 

Process Termination  

• Process executes last statement and asks the operating system to delete it (exit)  

• Output data from child to parent (via wait)  

• Process’ resources are de allocated by operating system  

• Parent may terminate execution of children processes (abort)  

• Child has exceeded allocated resources  

• Task assigned to child is no longer required  

• If parent is exiting Some operating system do not allow child to continue if its parent 

terminates  

All children terminated - cascading termination 
 

Inter process Communication  

 

• Processes within a system may be independent or cooperating  

• Cooperating process can affect or be affected by other processes, including sharing data  

• Reasons for cooperating processes:  

• Information sharing  

• Computation speedup  

• Modularity  

• Convenience  

• Cooperating processes need interprocess communication (IPC)  

• Two models of IPC  



• Shared memory  

• Message passing  

 

Communications Models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cooperating Processes  

 

• Independent process cannot affect or be affected by the execution of another process  

• Cooperating process can affect or be affected by the execution of another process  

Advantages of process cooperation  

• Information sharing  

• Computation speed-up  

• Modularity  

• Convenience  
 

Producer-Consumer Problem  

 

• Paradigm for cooperating processes, producer process produces information that is 

consumed by a consumer process  

• unbounded-buffer places no practical limit on the size of the buffer  

• bounded-buffer assumes that there is a fixed buffer size  
 

Bounded-Buffer – Shared-Memory Solution  

 

Shared data  

#define BUFFER_SIZE 10  

typedef struct {  

. . .  

} item;  

item buffer[BUFFER_SIZE];  

int in = 0;  



int out = 0;  

Solution is correct, but can only use BUFFER_SIZE-1 elements  

 
 

 

Bounded-Buffer – Producer  

 

while (true) { /* Produce an item */  

while (((in = (in + 1) % BUFFER SIZE count) == out)  

; /* do nothing -- no free buffers */  

buffer[in] = item;  

in = (in + 1) % BUFFER SIZE;  

}  

 

Bounded Buffer – Consumer  

 

while (true) {  

while (in == out)  

; // do nothing -- nothing to consume  

// remove an item from the buffer  

item = buffer[out];  

out = (out + 1) % BUFFER SIZE;  

return item;  

} 
 

Inter process Communication – Message Passing  

 

• Mechanism for processes to communicate and to synchronize their actions  

• Message system – processes communicate with each other without resorting to shared 

variables  

• IPC facility provides two operations:  

• send(message) – message size fixed or variable  

• receive(message)  

• If P and Q wish to communicate, they need to:  

• establish a communication link between them  

• exchange messages via send/receive  

• Implementation of communication link  

• physical (e.g., shared memory, hardware bus)  

• logical (e.g., logical properties)  
 

 

 

 

 

Direct Communication  

 



• Processes must name each other explicitly:  

• send (P, message) – send a message to process P  

• receive(Q, message) – receive a message from process Q  

• Properties of communication link  

• Links are established automatically  

• A link is associated with exactly one pair of communicating processes  

• Between each pair there exists exactly one link  

• The link may be unidirectional, but is usually bi-directional  

 
 

Indirect Communication  

 

• Messages are directed and received from mailboxes (also referred to as ports)  

• Each mailbox has a unique id  

• Processes can communicate only if they share a mailbox  

• Properties of communication link  

• Link established only if processes share a common mailbox  

• A link may be associated with many processes  

• Each pair of processes may share several communication links  

• Link may be unidirectional or bi-directional  

• Operations  

• create a new mailbox  

• send and receive messages through mailbox  

• destroy a mailbox  

• Primitives are defined as:  

• send(A, message) – send a message to mailbox A  

• receive(A, message) – receive a message from mailbox A  

• Mailbox sharing  

• P1, P2, and P3 share mailbox A  

• P1, sends; P2 and P3 receive  

• Who gets the message?  

• Solutions  

• Allow a link to be associated with at most two processes  

• Allow only one process at a time to execute a receive operation  

• Allow the system to select arbitrarily the receiver. Sender is notified who the receiver 

was.  

 

 

 

 

Synchronization  

 



• Message passing may be either blocking or non-blocking  

• Blocking is considered synchronous  

• Blocking send has the sender block until the message is received  

• Blocking receive has the receiver block until a message is available  

• Non-blocking is considered asynchronous  

• Non-blocking send has the sender send the message and continue  

• Non-blocking receive has the receiver receive a valid message or null  
 

Buffering  

 

Queue of messages attached to the link; implemented in one of three ways  

1. Zero capacity – 0 messages Sender must wait for receiver (rendezvous)  

2. Bounded capacity – finite length of n messages Sender must wait if link full  

3. Unbounded capacity – infinite length Sender never waits  

 
 

Examples of IPC Systems – POSIX 

 

• POSIX Shared Memory  

• Process first creates shared memory segment  

• segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);  

• Process wanting access to that shared memory must attach to it  

• shared memory = (char *) shmat(id, NULL, 0);  

• Now the process could write to the shared memory  

• printf(shared memory, "Writing to shared memory");  

• When done a process can detach the shared memory from its address space  

• shmdt(shared memory);  
 

Examples of IPC Systems – Mach 

 

• Mach communication is message based  

• Even system calls are messages  

• Each task gets two mailboxes at creation- Kernel and Notify  

• Only three system calls needed for message transfer  

• msg_send(), msg_receive(), msg_rpc()  

• Mailboxes needed for commuication, created via  

• port_allocate()  
 

Examples of IPC Systems – Windows XP 

 

• Message-passing centric via local procedure call (LPC) facility  

• Only works between processes on the same system  

• Uses ports (like mailboxes) to establish and maintain communication channels  

• Communication works as follows:  



The client opens a handle to the subsystem’s connection port object  

The client sends a connection request  

The server creates two private communication ports and returns the handle to one of them 

to the client  

The client and server use the corresponding port handle to send messages or callbacks 

and to listen for replies 

 

Local Procedure Calls in Windows XP  
 

 

Communications in Client-Server Systems  

 

• Sockets  

• Remote Procedure Calls  

• Remote Method Invocation (Java)  
 

Sockets  

• A socket is defined as an endpoint for communication  

• Concatenation of IP address and port  

• The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8  

• Communication consists between a pair of sockets  

 

Socket Communication 

 
 

 

 

 

Remote Procedure Calls  



 

• Remote procedure call (RPC) abstracts procedure calls between processes on networked 

systems  

• Stubs – client-side proxy for the actual procedure on the server  

• The client-side stub locates the server and marshalls the parameters  

• The server-side stub receives this message, unpacks the marshalled parameters, and 

peforms the procedure on the server  

 

Execution of RPC 
 

 

 

 

 

 

 

 

 

 

 

 

 

Remote Method Invocation  

 

• Remote Method Invocation (RMI) is a Java mechanism similar to RPCs  

• RMI allows a Java program on one machine to invoke a method on a remote object  

 

 

 

 

 

 

 

 

Marshalling Parameter 

 



 

 

Threads  

 

• To introduce the notion of a thread — a fundamental unit of CPU utilization that forms 

the basis of multithreaded computer systems  

• To discuss the APIs for the Pthreads, Win32, and Java thread libraries  

• To examine issues related to multithreaded programming  

 

 

Single and Multithreaded Processes 
 

 

 

 

 

 

Benefits  

 



• Responsiveness  

• Resource Sharing  

• Economy  

• Scalability  

 

Multi core Programming  

 

Multi core systems putting pressure on programmers, challenges include  

• Dividing activities  

• Balance  

• Data splitting  

• Data dependency  

• Testing and debugging  

 
 

Multithreaded Server Architecture 
 

 
Concurrent Execution on a Single-core System 
 

 
 

 

 

 

 

 

 

 

 

 

 

Parallel Execution on a Multi core System 
 



 

 

User Threads  

 

• Thread management done by user-level threads librarynThree primary thread libraries:  

• POSIX Pthreadsl Win32 threads  

• Java threads  

 

Kernel Threads  

 

• Supported by the Kernel  

• Examples  

• Windows XP/2000  

• Solaris  

• Linux  

• Tru64 UNIX  

• Mac OS X  

 

Multithreading Models  

 

• Many-to-One  

• One-to-One  

• Many-to-Many 

 

 

 

 

Many-to-One  

 

Many user-level threads mapped to single kernel thread  

Examples:  

• Solaris Green Threads  

• GNU Portable Threads  

 

One-to-One  

 



Each user-level thread maps to kernel thread  

Examples  

• Windows NT/XP/2000  

• Linux 

 

 

Solaris 9 and later 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many-to-Many Model  

 

• Allows many user level threads to be mapped to many kernel threads  

• Allows the operating system to create a sufficient number of kernel threads  

• Solaris prior to version 9  

 

Windows NT/2000 with the ThreadFiber package 
 

 

 

 

 

 

 

 

 

 

 

 

 

Two-level Model  

 

Similar to M:M, except that it 

allows a user thread to be bound 

to kernel thread  

Examples  

• IRIX  

• HP-UX  



• Tru64 UNIX  

• Solaris 8 and earlier  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thread Libraries  

 

• Thread library provides programmer with API for creating and managing threads  

• Two primary ways of implementing  

• Library entirely in user space  

• Kernel-level library supported by the OS  

 

Pthreads  

 

• May be provided either as user-level or kernel-level  

• A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization  

• API specifies behavior of the thread library, implementation is up to development of the 

library  

• Common in UNIX operating systems (Solaris, Linux, Mac OS X)  

 

Java Threads  

 

• Java threads are managed by the JVM  

• Typically implemented using the threads model provided by underlying OS  

• Java threads may be created by:lExtending Thread class  

• Implementing the Runnable interface  

 

Threading Issues  

 

• Semantics of fork() and exec() system calls  

• Thread cancellation of target thread  

• Asynchronous or deferred  



• Signal handling  

• Thread pools  

• Thread-specific data  

• Scheduler activations  

 

Thread Cancellation 

  

• Terminating a thread before it has finished  

• Two general approaches:  

• Asynchronous cancellation terminates the target thread immediately  

• Deferred cancellation allows the target thread to periodically check if it should be 

cancelled  

 

Signal Handling  

 

• Signals are used in UNIX systems to notify a process that a particular event has occurred  

• A signal handler is used to process signals  

• 1.Signal is generated by particular event  

• 2.Signal is delivered to a process  

• 3.Signal is handled  

• Options:  

• Deliver the signal to the thread to which the signal applies  

• Deliver the signal to every thread in the process  

• Deliver the signal to certain threads in the process  

• Assign a specific threa to receive all signals for the process  

 

Thread Pools  

 

• Create a number of threads in a pool where they await work  

• Advantages:  

• Usually slightly faster to service a request with an existing thread than create a new 

thread  

• Allows the number of threads in the application(s) to be bound to the size of the pool  

 

Thread Specific Data  

 

• Allows each thread to have its own copy of data  

• Useful when you do not have control over the thread creation process (i.e., when using a 

thread pool)  

 

 

 

 

Scheduler Activations  



 

• Both M:M and Two-level models require communication to maintain the appropriate 

number of kernel threads allocated to the application  

• Scheduler activations provide upcalls - a communication mechanism from the kernel to 

the thread library  

• This communication allows an application to maintain the correct number kernel threads  

 

Windows XP Threads  
 

 

 

Implements the one-to-one mapping, kernel-level  

• Each thread contains  

• A thread id  

• Register set  

• Separate user and kernel stacks  

• Private data storage area  

• The register set, stacks, and private storage area are known as the context of the threads  

• The primary data structures of a thread include:  

• ETHREAD (executive thread block)  

• KTHREAD (kernel thread block)  

• TEB (thread environment block)  

 

Linux Threads 



 

• Linux refers to them as tasks rather than threads  

• Thread creation is done through clone() system call  

• clone() allows a child task to share the address space of the parent task (process) 

 

CPU Scheduling 

 

• To introduce CPU scheduling, which is the basis for multiprogrammed operating systems  

• To describe various CPU-scheduling algorithms  

• To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular 

system  

• Maximum CPU utilization obtained with multiprogramming  

• CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O 

wait  

• CPU burst distribution  

 

Histogram of CPU-burst Times 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Alternating Sequence of CPU And I/O Bursts 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 

Scheduler  

 

Selects from among the processes in memory that are ready to execute, and allocates the CPU to 

one of them  

CPU scheduling decisions may take place when a process:  

1. Switches from running to waiting state  

2. Switches from running to ready state  

3. Switches from waiting to ready  

4. Terminates  

Scheduling under 1 and 4 is non-preemptive  

All other scheduling is preemptive  
 

Dispatcher  

 

• Dispatcher module gives control of the CPU to the process selected by the short-term 

scheduler; this involves:  

• switching context  

• switching to user mode  

• jumping to the proper location in the user program to restart that program  

• Dispatch latency – time it takes for the dispatcher to stop one process and start another 

running  

 

Scheduling Criteria  

 

• CPU utilization – keep the CPU as busy as possible  

• Throughput – # of processes that complete their execution per time unit  

• Turnaround time – amount of time to execute a particular process  

• Waiting time – amount of time a process has been waiting in the ready queue  



• Response time – amount of time it takes from when a request was submitted 

until the first response is produced, not output (for time-sharing 

environment)  

• Max CPU utilization  

• Max throughput  

• Min turnaround time  

• Min waiting time  

• Min response time  
 

First-Come, First-Served (FCFS) Scheduling  

 

Process      Burst Time  

P1      24  

P2     3  

P3     3  

 

Suppose that the processes arrive in the order: P1 , P2 , P3  
 

 

 

 

The Gantt Chart for the schedule is:  

 
 

Waiting time for P1 = 0; P2 = 24; P3 = 27  

Average waiting time: (0 + 24 + 27)/3 = 17  

Suppose that the processes arrive in the order P2 , P3 , P1 

The Gantt chart for the schedule is Waiting time for P1 = 6; P2 = 0; P3 = 3nAverage waiting 

time: (6 + 0 + 3)/3 = 3 

 

Much better than previous case  

Convoy effect short process behind long process 
 

 



 

 

Shortest-Job-First (SJF) Scheduling  

 

• Associate with each process the length of its next CPU burst. Use these lengths to 

schedule the process with the shortest time  

• SJF is optimal – gives minimum average waiting time for a given set of processes  

 

The difficulty is knowing  

 

Process    Arrival Time     Burst Time  

P1     0.0       6  

P2     2.0       8     

P3    4.0       7  

P4     5.0       3 

 

SJF scheduling chart  

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request 

 
 

 

 

 

 

Determining Length of Next CPU Burst 

 

 
 

 

Can only estimate the length  

Can be done by using the length of previous CPU bursts, using exponential averaging  

 

 

 

 

 

 

 

 



Prediction of the Length of the Next CPU Burst 

 

 
 

 

Examples of Exponential Averaging  

 

a =0  

tn+1 = tn  

Recent history does not count  

a =1  

tn+1 = a tn  

Only the actual last CPU burst counts  

If we expand the formula, we get:  

tn+1 = a tn+(1 - a)a tn -1 + …  

+(1 - a )j a tn -j + … 

+(1 - a )n +1 t0 Since both a and (1 - a) are less than or equal to 1, each successive term has less 

weight than its predecessor 
 

Priority Scheduling  

 

• A priority number (integer) is associated with each process  

• The CPU is allocated to the process with the highest priority (smallest integer º highest 

priority)  

• Preemptive  

• nonpreemptive  

• SJF is a priority scheduling where priority is the predicted next CPU burst time  

• Problem º Starvation – low priority processes may never execute  

• Solution º Aging – as time progresses increase the priority of the process  

 

 

 



Round Robin (RR) 

  

• Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. 

After this time has elapsed, the process is preempted and added to the end of the ready 

queue.  

• If there are n processes in the ready queue and the time quantum is q, then each process 

gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more 

than (n-1)q time units.  

• Performance  

• q large Þ FIFO  

• q small Þ q must be large with respect to context switch, otherwise overhead is too high  

 

Example of RR with Time Quantum = 4  

 

Process    Burst Time  

P1     24  

P2     3  

P3     3 
 

The Gantt chart is: 

 

 
 

 

Time Quantum and Context Switch Time 

 

 



Turnaround Time Varies With The Time Quantum 

Multilevel Queue  

 

• Ready queue is partitioned into separate queues: foreground (interactive) background 

(batch)  

• Each queue has its own scheduling algorithm  

• foreground – RR  

• background – FCFS  

• Scheduling must be done between the queues  

• Fixed priority scheduling; (i.e., serve all from foreground then from background). 

Possibility of starvation.  

• Time slice – each queue gets a certain amount of CPU time which it can schedule 

amongst its processes; i.e., 80% to foreground in RR  

20% to background in FCFS 

Multilevel Queue Scheduling 

 

 



Multilevel Feedback Queue  

 

• A process can move between the various queues; aging can be implemented this way  

• Multilevel-feedback-queue scheduler defined by the following parameters:  

• number of queues  

• scheduling algorithms for each queue  

• method used to determine when to upgrade a process  

• method used to determine when to demote a process  

method used to determine which queue a process will enter when that process needs service 

 

Example of Multilevel Feedback Queue  

 

Three queues:  

• Q0 – RR with time quantum 8 milliseconds  

• Q1 – RR time quantum 16 milliseconds  

• Q2 – FCFS  

• Scheduling  

• A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.  

• At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does 

not complete, it is preempted and moved to queue Q2.  

 

Multilevel Feedback Queues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thread Scheduling  

 

• Distinction between user-level and kernel-level threads  

• Many-to-one and many-to-many models, thread library schedules user-level threads to 

run on LWP  

• Known as process-contention scope (PCS) since scheduling competition is within the 

process  

 



• Kernel thread scheduled onto available CPU is system-contention scope (SCS) – 

competition among all threads in system  

 

Pthread Scheduling  

 

• API allows specifying either PCS or SCS during thread creation  

• PTHREAD SCOPE PROCESS schedules threads using PCS scheduling  

• PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.  
 

Pthread Scheduling API  

 

#include <pthread.h>  

#include <stdio.h>  

#define NUM THREADS 5  

int main(int argc, char *argv[]) 

{  

int i; pthread t tid[NUM THREADS];  

pthread attr t attr;  

/* get the default attributes */  

pthread attr init(&attr);  

/* set the scheduling algorithm to PROCESS or SYSTEM */  

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);  

/* set the scheduling policy - FIFO, RT, or OTHER */  

pthread attr setschedpolicy(&attr, SCHED OTHER);  

/* create the threads */  

for (i = 0; i < NUM THREADS; i++)  

pthread create(&tid[i],&attr,runner,NULL);  

/* now join on each thread */  

for (i = 0; i < NUM THREADS; i++)  

pthread join(tid[i], NULL);  

}  

/* Each thread will begin control in this function */  

void *runner(void *param)  

{  

printf("I am a thread\n");  

pthread exit(0);  

} 
 

Multiple-Processor Scheduling 

  

• CPU scheduling more complex when multiple CPUs are available  

• Homogeneous processors within a multiprocessor  

• Asymmetric multiprocessing – only one processor accesses the system data structures, 

alleviating the need for data sharing  

• Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in 

common ready queue, or each has its own private queue of ready processes  

• Processor affinity – process has affinity for processor on which it is currently running  



• soft affinity  

• hard affinity  

NUMA and CPU Scheduling 

 

 

 

Multi core Processors  

 

• Recent trend to place multiple processor cores on same physical chip  

• Faster and consume less power  

• Multiple threads per core also growing  

• Takes advantage of memory stall to make progress on another thread while memory 

retrieve happens  

 

Multithreaded Multi core System 

 
 

 

Operating System Examples 

  

• Solaris scheduling  

• Windows XP scheduling  

• Linux scheduling  



 

 

 

Solaris Dispatch Table 

 
 

 

Solaris Scheduling 

 

 

 

 

 



 

 

 

Windows XP Priorities 
 

 

Linux Scheduling  

 

• Constant order O(1) scheduling time  

• Two priority ranges: time-sharing and real-time  

• Real-time range from 0 to 99 and nice value from 100 to 140  

 

Priorities and Time-slice length 

 
 

 

 

 

 

 



 

 

 

List of Tasks Indexed According to Priorities 

 

 

Algorithm Evaluation  

 

• Deterministic modeling – takes a particular predetermined workload and defines the 

performance of each algorithm for that workload  

• Queuing models  

• Implementation  
 

Evaluation of CPU schedulers by Simulation 

 

 

 

 

 

 

 



 

 

 

UNIT -3 

CONCURRENCY 

 

 

Process Synchronization  

 

• To introduce the critical-section problem, whose solutions can be used to ensure the 

consistency of shared data  

• To present both software and hardware solutions of the critical-section problem  

• To introduce the concept of an atomic transaction and describe mechanisms to ensure 

atomicity  

• Concurrent access to shared data may result in data inconsistency  

• Maintaining data consistency requires mechanisms to ensure the orderly execution of 

cooperating processes  

• Suppose that we wanted to provide a solution to the consumer-producer problem that fills 

all the buffers. We can do so by having an integer count that keeps track of the number of 

full buffers. Initially, count is set to 0. It is incremented by the producer after it produces 

a new buffer and is decremented by the consumer after it consumes a buffer  

 

Producer  

 

while (true) {  

/* produce an item and put in nextProduced */  

while (count == BUFFER_SIZE)  

; // do nothing  

buffer [in] = nextProduced;  

in = (in + 1) % BUFFER_SIZE;  

count++;  

}  

 

Consumer  

 

while (true) {  

while (count == 0)  

; // do nothing  

nextConsumed = buffer[out];  

out = (out + 1) % BUFFER_SIZE;  

count--;  

/* consume the item in nextConsumed  

}  

 

 

 

 

 



 
 

Race Condition  

 

count++ could be implemented as  

register1 = count 

register1 = register1 + 1  

count = register1  

count-- could be implemented as  

 

register2 = count  

register2 = register2 - 1  

count = register2  

 

Consider this execution interleaving with “count = 5” initially: 

 

S0: producer execute register1 = count {register1 = 5}  

S1: producer execute register1 = register1 + 1 {register1 = 6}  

S2: consumer execute register2 = count {register2 = 5}  

S3: consumer execute register2 = register2 - 1 {register2 = 4} 

S4: producer execute count = register1 {count = 6 }  

S5: consumer execute count = register2 {count = 4} 

 

Solution to Critical-Section Problem  

 

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can 

be executing in their critical sections  

2. Progress - If no process is executing in its critical section and there exist some processes that 

wish to enter their critical section, then the selection of the processes that will enter the critical 

section next cannot be postponed indefinitely  

3.Bounded Waiting - A bound must exist on the number of times that other processes are 

allowed to enter their critical sections after a process has made a request to enter its critical 

section and before that request is granted  

Assume that each process executes at a nonzero speed  

No assumption concerning relative speed of the N processes 

 

Peterson’s Solution 

  

• Two process solution  

• Assume that the LOAD and STORE instructions are atomic; that is, cannot be 

interrupted.  

• The two processes share two variables:  

• int turn;  

• Boolean flag[2]  

• The variable turn indicates whose turn it is to enter the critical section.  

• The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = 

true implies that process Pi is ready!  



 

 

 
 

 

Algorithm for Process Pi  

do {  

flag[i] = TRUE;  

turn = j;  

while (flag[j] && turn == j);  

critical section  

flag[i] = FALSE;  

remainder section  

} while (TRUE);  

 

Synchronization Hardware  

 

• Many systems provide hardware support for critical section code  

• Uni processors – could disable interrupts  

• Currently running code would execute without preemption  

• Generally too inefficient on multiprocessor systems  

➢ Operating systems using this not broadly scalable  

• Modern machines provide special atomic hardware instructions  

➢ Atomic = non-interruptible  

• Either test memory word and set value Or swap contents of two memory words  

 

Solution to Critical-section Problem Using Locks  

do {  

acquire lock  

critical section  

release lock  

remainder section  

} while (TRUE);  

 

TestAndSet Instruction  

 

Definition:  

boolean TestAndSet (boolean *target)  

{  

boolean rv = *target;  

*target = TRUE;  

return rv:  

}  

 

Solution using TestAndSet  

 

 

Shared boolean variable lock., initialized to false.  



Solution:  

do {  

while ( TestAndSet (&lock ))  

; // do nothing  

// critical section  

lock = FALSE;  

// remainder section  

} while (TRUE);  

Swap Instruction  

 

Definition:  

void Swap (boolean *a, boolean *b)  

{  

boolean temp = *a;  

*a = *b;  

*b = temp:  

} 

 

Solution using Swap  

 

Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable 

key  

Solution:  

do {  

key = TRUE;  

while ( key == TRUE)  

Swap (&lock, &key );  

// critical section  

lock = FALSE; 

// remainder section  

} while (TRUE);  

 

Bounded-waiting Mutual Exclusion with TestandSet()  

 

do {  

waiting[i] = TRUE;  

key = TRUE;  

while (waiting[i] && key)  

key = TestAndSet(&lock);  

waiting[i] = FALSE;  

// critical section  

j = (i + 1) % n;  

while ((j != i) && !waiting[j])  

j = (j + 1) % n;  

if (j == i)  

lock = FALSE;  

else  

waiting[j] = FALSE;  

// remainder section  



} while (TRUE);  

 

Semaphore  

 

Synchronization tool that does not require busy waiting nSemaphore S – integer variable  

Two standard operations modify S: wait() and signal()  

Originally called P() and V()  

Less complicated  

Can only be accessed via two indivisible (atomic) operations  

 

wait (S) {  

while S <= 0  

; // no-op  

S--;  

}  

signal (S) {  

S++;  

}  

 

Semaphore as General Synchronization Tool  

 

Counting semaphore – integer value can range over an unrestricted domain  

Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement  

Also known as mutex locks Can implement a counting semaphore S as a binary semaphore  

Provides mutual exclusionSemaphore mutex; // initialized to do {  

 

wait (mutex);  

// Critical Section  

signal (mutex); 

} while (TRUE);  

 

 

Semaphore Implementation  

 

• Must guarantee that no two processes can execute wait () and signal () on the same 

semaphore at the same time  

• Thus, implementation becomes the critical section problem where the wait and signal 

code are placed in the critical section.  

• Could now have busy waiting in critical section implementation  

But implementation code is short  

Little busy waiting if critical section rarely occupied  

• Note that applications may spend lots of time in critical sections and therefore this is not 

a good solution.   

 

Semaphore Implementation with no Busy waiting  

 



• With each semaphore there is an associated waiting queue. Each entry in a waiting queue 

has two data items:  

• value (of type integer)  

• pointer to next record in the list  

Two operations:  

• block – place the process invoking the operation on the appropriate waiting queue.  

• wakeup – remove one of processes in the waiting queue and place it in the ready queue.  

 

Implementation of wait:  

wait(semaphore *S) {  

S->value--;  

if (S->value < 0) {  

add this process to S->list;  

block();  

}  

}  

Implementation of signal:  

signal(semaphore *S) {  

S->value++;  

if (S->value <= 0) {  

remove a process P from S->list;  

wakeup(P);  

}  

}  
 

Deadlock and Starvation  

 

• Deadlock – two or more processes are waiting indefinitely for an event that can be caused 

by only one of the waiting processes  

• Let S and Q be two semaphores initialized to 1  

 

   P0          P1  

wait (S);     wait (Q);  

wait (Q);      wait (S);  

.  

. .  

. .  

signal (S);     signal (Q);  

signal (Q);     signal (S); 

 

 

• Starvation – indefinite blocking. A process may never be removed from the semaphore 

queue in which it is suspended  

• Priority Inversion - Scheduling problem when lower-priority process holds a lock needed 

by higher-priority process  

 

Classical Problems of Synchronization  



 

• Bounded-Buffer Problem  

• Readers and Writers Problem  

• Dining-Philosophers Problem  

 

Bounded-Buffer Problem  

 

• N buffers, each can hold one item  

• Semaphore mutex initialized to the value 1  

• Semaphore full initialized to the value 0  

• Semaphore empty initialized to the value N.  

 

 

 

 

The structure of the producer process  

 

do { // produce an item in nextp  

wait (empty);  

wait (mutex);  

// add the item to the buffer  

signal (mutex);  

signal (full);  

} while (TRUE);  

The structure of the consumer process  

do { wait (full);  

wait (mutex);  

// remove an item from buffer to nextc  

signal (mutex);  

signal (empty);  

// consume the item in nextc  

} while (TRUE); 

 
 

Readers-Writers Problem  

 

A data set is shared among a number of concurrent processes  

 

• Readers – only read the data set; they do not perform any updates  

• Writers – can both read and writenProblem – allow multiple readers to read at the same 

time. Only one single writer can access the shared data at the same time  

• Shared Data 

• Data set  

• Semaphore mutex initialized to 1  

• Semaphore wrt initialized to 1  

• Integer readcount initialized to 0  
 



The structure of a writer process  

do { wait (wrt) ;  

// writing is performed  

signal (wrt) ;  

} while (TRUE);  

The structure of a reader process  

do {  

wait (mutex) ;  

readcount ++ ;  

if (readcount == 1)  

wait (wrt) ;  

signal (mutex)  

// reading is performed  

wait (mutex) ;  

readcount - - ;  

if (readcount == 0)  

signal (wrt) ;  

signal (mutex) ;  

} while (TRUE); 
 

 

Dining-Philosophers Problem  

 

• Shared data  

• Bowl of rice (data set)  

• Semaphore chopstick [5] initialized to 1  

• The structure of Philosopher i:  

 

do {  

wait ( chopstick[i] );  

wait ( chopStick[ (i + 1) % 5] );  

// eat  

signal ( chopstick[i] );  

signal (chopstick[ (i + 1) % 5] );  

// think  

} while (TRUE); 
 

 

Problems with Semaphores  

 

Incorrect use of semaphore operations:  

l signal (mutex)  

….  

wait (mutex)  

wait (mutex) …  

wait (mutex)  

Omitting of wait (mutex) or signal (mutex) (or both)  

Monitors  



A high-level abstraction that provides a convenient and effective mechanism for process 

synchronization  

Only one process may be active within the monitor at a time  

monitor monitor-name  

{  

// shared variable declarations  

procedure P1 (…) { …. }  

…  

procedure Pn (…) {……}  

Initialization code ( ….) { … }  

…  

}  

} 

 

Schematic view of a Monitor 
 

 

 

 

 

Condition 

Variables  

 

condition x, y;  

 

Two operations on a condition variable:  

 

x.wait () – a process that invokes the operation is suspended.  

x.signal () – resumes one of processes (if any) that invoked x.wait () 
 

 

Monitor with Condition Variables 
 

 

Solution to Dining Philosophers  

monitor DP  

{  



enum { THINKING; HUNGRY, EATING) state [5] ;  

condition self [5];  

void pickup (int i) {  

state[i] = HUNGRY;  

test(i);  

if (state[i] != EATING) self [i].wait;  

}  

void putdown (int i) {  

state[i] = THINKING;  

// test left and right neighbors  

test((i + 4) % 5);  

test((i + 1) % 5);  

}  

void test (int i) {  

if ( (state[(i + 4) % 5] != EATING) &&  

(state[i] == HUNGRY) &&  

(state[(i + 1) % 5] != EATING) ) {  

state[i] = EATING ;  

self[i].signal () ;  

}  

}  

initialization_code() {  

for (int i = 0; i < 5; i++)  

state[i] = THINKING;  

}  

} 

 

Each philosopher I invokes the operations pickup()  

and putdown() in the following sequence:  

DiningPhilosophters.pickup (i);  

EAT  

DiningPhilosophers.putdown (i); 

 

Monitor Implementation Using Semaphores 

 

Variables  

 

semaphore mutex; // (initially = 1)  

semaphore next; // (initially = 0)  

int next-count = 0;nEach procedure F will be replaced by  

wait(mutex);  

…  

body of F;  

…  

if (next_count > 0)  

signal(next)  

else  

signal(mutex);nMutual exclusion within a monitor is ensured. 

 



Monitor Implementation 

 

For each condition variable x, we have:  

semaphore x_sem; // (initially = 0)  

int x-count = 0;nThe operation x.wait can be implemented as:  

x-count++;  

if (next_count > 0)  

signal(next);  

else  

signal(mutex);  

wait(x_sem);  

x-count--;  

The operation x.signal can be implemented as:  

if (x-count > 0) {  

next_count++;  

signal(x_sem);  

wait(next);  

next_count--;  

} 
 

 

A Monitor to Allocate Single Resource  

 

monitor ResourceAllocator  

{  

boolean busy;  

condition x;  

void acquire(int time) { 

if (busy)  

x.wait(time);  

busy = TRUE;  

}  

void release() {  

busy = FALSE;  

x.signal();  

}  

initialization code() {  

busy = FALSE;  

}  

} 
 

Synchronization Examples  

 

• Solaris  

• Windows XP  

• Linux  

• Pthreads  

 



 

 

Solaris Synchronization  

 

• Implements a variety of locks to support multitasking, multithreading (including real-

time threads), and multiprocessing  

• Uses adaptive mutexes for efficiency when protecting data from short code segments  

• Uses condition variables and readers-writers locks when longer sections of code need 

access to data  

• Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or 

reader-writer lock  
 

Windows XP Synchronization  

 

• Uses interrupt masks to protect access to global resources on uniprocessor systems  

• Uses spinlocks on multiprocessor systems  

• Also provides dispatcher objects which may act as either mutexes and semaphores  

• Dispatcher objects may also provide events  

• An event acts much like a condition variable  
 

Linux Synchronization  

 

• Linux:lPrior to kernel Version 2.6, disables interrupts to implement short critical sections  

• Version 2.6 and later, fully preemptive  

Linux provides:  

• semaphores  

• spin locks  

 

Pthreads Synchronization  

 

• Pthreads API is OS-independent  

It provides:  

• mutex locks  

• condition variablesnNon-portable extensions include:  

• read-write locks  

• spin locks  

 

Atomic Transactions  

 

• System Model  

• Log-based Recovery  

• Checkpoints  

• Concurrent Atomic Transactions  

 

System Model  



 

• Assures that operations happen as a single logical unit of work, in its entirety, or not at all  

• Related to field of database systems  

• Challenge is assuring atomicity despite computer system failures  

• Transaction - collection of instructions or operations that performs single logical function  

• Here we are concerned with changes to stable storage – disk  

• Transaction is series of read and write operations  

• Terminated by commit (transaction successful) or abort (transaction failed) operation 

Aborted transaction must be rolled back to undo any changes it performed  

 

Types of Storage Media  

 

• Volatile storage – information stored here does not survive system crashes  

• Example: main memory, cache  

• Nonvolatile storage – Information usually survives crashes  

• Example: disk and tape  

• Stable storage – Information never lost  

• Not actually possible, so approximated via replication or RAID to devices with 

independent failure modes  

• Goal is to assure transaction atomicity where failures cause loss of information on 

volatile storage  

 

Log-Based Recovery  

• Record to stable storage information about all modifications by a transaction  

• Most common is write-ahead logging  

• Log on stable storage, each log record describes single transaction write operation, 

including  

Transaction name  

Data item name  

Old value  

New value 

• <Ti starts> written to log when transaction Ti starts  

• <Ti commits> written when Ti commits  

• Log entry must reach stable storage before operation on data occurs  
 

Log-Based Recovery Algorithm  

Using the log, system can handle any volatile memory errors 

 

• Undo(Ti) restores value of all data updated by Ti  

• Redo(Ti) sets values of all data in transaction Ti to new values  

• Undo(Ti) and redo(Ti) must be idempotent  

• Multiple executions must have the same result as one execution  

• If system fails, restore state of all updated data via log  

• If log contains <Ti starts> without <Ti commits>, undo(Ti)  



• If log contains <Ti starts> and <Ti commits>, redo(Ti)  
 

Checkpoints  

 

Log could become long, and recovery could take long  

Checkpoints shorten log and recovery time.  

Checkpoint scheme:  

1.Output all log records currently in volatile storage to stable storage  

2.Output all modified data from volatile to stable storage  

3.Output a log record <checkpoint> to the log on stable storage  

Now recovery only includes Ti, such that Ti started executing before the most recent checkpoint, 

and all transactions after Ti All other transactions already on stable storage 
 

Concurrent Transactions  

 

• Must be equivalent to serial execution – serializability  

• Could perform all transactions in critical section  

• Inefficient, too restrictive  

• Concurrency-control algorithms provide serializability  
 

Serializability  

 

• Consider two data items A and B  

• Consider Transactions T0 and T1  

• Execute T0, T1 atomically  

• Execution sequence called schedule  

• Atomically executed transaction order called serial schedule  

• For N transactions, there are N! valid serial schedules  
 

Schedule 1: T0 then T1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Non-serial Schedule  

 

• Non-serial schedule allows overlapped execute  

• Resulting execution not necessarily incorrect  

• Consider schedule S, operations Oi, Oj  

• Conflict if access same data item, with at least one write  

• If Oi, Oj consecutive and operations of different transactions & Oi and Oj don’t conflict  

• Then S’ with swapped order Oj Oi equivalent to S  

• If S can become S’ via swapping non conflicting operations  

• S is conflict serializable  
 

Schedule 2: Concurrent Serializable Schedule 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locking Protocol  

 

• Ensure serializability by associating lock with each data item  

• Follow locking protocol for access control  

• Locks  

• Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q but not write Q  

• Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read and write Q  

• Require every transaction on item Q acquire appropriate lock  

• If lock already held, new request may have to wait  

• Similar to readers-writers algorithm  

 

Two-phase Locking Protocol  

• Generally ensures conflict serializability  

• Each transaction issues lock and unlock requests in two phases  

• Growing – obtaining locks  

• Shrinking – releasing locks  



• Does not prevent deadlock  

 

Timestamp-based Protocols  

 

• Select order among transactions in advance – timestamp-ordering  

• Transaction Ti associated with timestamp TS(Ti) before Ti starts  

• TS(Ti) < TS(Tj) if Ti entered system before Tj  

• TS can be generated from system clock or as logical counter incremented at each entry of 

transaction  

• Timestamps determine serializability order  

• If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule 

where Ti appears before Tj  
 

Timestamp-based Protocol Implementation  

 

• Data item Q gets two timestamps  

• W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) 

successfully  

• R-timestamp(Q) – largest timestamp of successful read(Q)  

• Updated whenever read(Q) or write(Q) executed  

• Timestamp-ordering protocol assures any conflicting read and write executed in 

timestamp order  

• Suppose Ti executes read(Q) 

 

If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was already overwritten read 

operation rejected and Ti rolled back  

If TS(Ti) ≥ W-timestamp(Q) read executed, R-timestamp(Q) set to max(R-timestamp(Q), 

TS(Ti))  

Timestamp-ordering Protocol  

Suppose Ti executes write (Q)  

If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed previously and Ti assumed it 

would never be produced Write operation rejected, Ti rolled back If TS(Ti) < W-time stamp(Q), 

Ti attempting to write obsolete value of Q Write operation rejected and Ti rolled back Otherwise, 

write executed Any rolled back transaction Ti is assigned new timestamp and restarted 

Algorithm ensures conflict serializability and freedom from deadlock  

Schedule Possible Under Timestamp Protocol 
 

 

 

 

 

 

 

 



 

 

UNIT IV 
Memory Management 

 

 

• To provide a detailed description of various ways of organizing memory hardware  

• To discuss various memory-management techniques, including paging and segmentation  

• To provide a detailed description of the Intel Pentium, which supports both pure 

segmentation and segmentation with paging  

• Program must be brought (from disk) into memory and placed within a process for it to 

be run  

• Main memory and registers are only storage CPU can access directly  

• Register access in one CPU clock (or less)  

• Main memory can take many cycles  

• Cache sits between main memory and CPU registers  

• Protection of memory required to ensure correct operation  

 
Base and Limit Registers 

  

A pair of base and limit registers define the logical address space 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binding of Instructions and Data to Memory  

 

Address binding of instructions and data to memory addresses can happen at three different 

stages  

Compile time: If memory location known a priori, absolute code can be generated; must 

recompile code if starting location changes  

Load time: Must generate relocatable code if memory location is not known at compile time  



Execution time: Binding delayed until run time if the process can be moved during its execution 

from one memory segment to another. Need hardware support for address maps (e.g., base and 

limit registers)  
 

Multistep Processing of a User Program 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logical vs. Physical Address Space  

 

• The concept of a logical address space that is bound to a separate physical address space 

is central to proper memory management  

• Logical address – generated by the CPU; also referred to as virtual address  

• Physical address – address seen by the memory unit  

• Logical and physical addresses are the same in compile-time and load-time address-

binding schemes; logical (virtual) and physical addresses differ in execution-time 

address-binding scheme  
 

 

Memory-Management Unit (MMU)  

 

• Hardware device that maps virtual to physical address  

• In MMU scheme, the value in the relocation register is added to every address generated 

by a user process at the time it is sent to memory  

• The user program deals with logical addresses; it never sees the real physical addresses  

 
 

 



Dynamic Loading  

 

• Routine is not loaded until it is called  

• Better memory-space utilization; unused routine is never loaded  

• Useful when large amounts of code are needed to handle infrequently occurring cases  

• No special support from the operating system is required implemented through program 

design  
 

Dynamic Linking  

 

• Linking postponed until execution time  

• Small piece of code, stub, used to locate the appropriate memory-resident library routine  

• Stub replaces itself with the address of the routine, and executes the routine  

• Operating system needed to check if routine is in processes’ memory address  

• Dynamic linking is particularly useful for libraries  

• System also known as shared libraries  

Swapping  

 
A process can be swapped temporarily out of memory to a backing store, and then brought back 

into memory for continued execution Backing store – fast disk large enough to accommodate 

copies of all memory images for all users; must provide direct access to these memory images 

Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority 

process is swapped out so higher-priority process can be loaded and executed Major part of swap 

time is transfer time; total transfer time is directly proportional to the amount of memory 

swapped Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and 

Windows)  

System maintains a ready queue of ready-to-run processes which have memory images on disk 



 

Schematic View of Swapping 

 
 

 

 

• Main memory usually into two partitions:  

• Resident operating system, usually held in low memory with interrupt vector  

• User processes then held in high memory Relocation registers used to protect user 

processes from each other, and from changing operating-system code and data  

• Base register contains value of smallest physical address  

• Limit register contains range of logical addresses – each logical address must be less than 

the limit register  

• MMU maps logical address dynamically  

 
 

Hardware Support for Relocation and Limit Registers 

 

 
 



 

 

 

• Multiple-partition allocation  

• Hole – block of available memory; holes of various size are scattered throughout memory  

• When a process arrives, it is allocated memory from a hole large enough to accommodate 

it  

 

 

Operating system maintains information about:  

a) allocated partitions   b) free partitions (hole)  
 

Dynamic Storage-Allocation Problem  

• First-fit: Allocate the first hole that is big enough  

• Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless 

ordered by size Produces the smallest leftover hole  

• Worst-fit: Allocate the largest hole; must also search entire list  

• Produces the largest leftover hole  

• First-fit and best-fit better than worst-fit in terms of speed and storage utilization  

Fragmentation  

• External Fragmentation – total memory space exists to satisfy a request, but it is not 

contiguous  

• Internal Fragmentation – allocated memory may be slightly larger than requested 

memory; this size difference is memory internal to a partition, but not being used  

• Reduce external fragmentation by compaction  

• Shuffle memory contents to place all free memory together in one large block  

• Compaction is possible only if relocation is dynamic, and is done at execution time.  

• I/O problem  

➢ Latch job in memory while it is involved in I/O  
➢ Do I/O only into OS buffers 



 

Paging  

 

• Logical address space of a process can be noncontiguous; process is allocated physical 

memory whenever the latter is available  

• Divide physical memory into fixed-sized blocks called frames (size is power of 2, 

between 512 bytes and 8,192 bytes)  

• Divide logical memory into blocks of same size called pages Keep track of all free 

frames  

• To run a program of size n pages, need to find n free frames and load program  

• Set up a page table to translate logical to physical addresses  

• Internal fragmentation  
 

Address Translation Scheme  

 

• Address generated by CPU is divided into  

 

• Page number (p) – used as an index into a page table which contains base address of 

each page in physical memory  

• Page offset (d) – combined with base address to define the physical memory address that 

is sent to the memory unit  

• For given logical address space 2m and page size 2n 

Paging Hardware 

 

 



 

Paging Model of Logical and Physical Memory 

 

 

Paging Example 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32-byte memory and 4-byte pages 

Free Frames 

 

Implementation of Page Table 

• Page table is kept in main memory  

• Page-table base register (PTBR) points to the page table  

• Page-table length register (PRLR) indicates size of the page table  

• In this scheme every data/instruction access requires two memory accesses. One for the 

page table and one for the data/instruction.  

• The two memory access problem can be solved by the use of a special fast-lookup 

hardware cache called associative memory or translation look-aside buffers (TLBs)  

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely 

identifies each process to provide address-space protection for that process  

 

Associative Memory  

 

• Associative memory – parallel search  

• Address translation (p, d)  

• If p is in associative register, get frame # out  

• Otherwise get frame # from page table in memory  

 

 

 



Paging Hardware With TLB 

 

Effective Access Time  

• Associative Lookup = e time unit  

• Assume memory cycle time is 1 microsecond  

• Hit ratio – percentage of times that a page number is found in the associative registers; 

ratio related to number of associative registers  

• Hit ratio = an Effective Access Time (EAT)  

EAT = (1 + e) a + (2 + e)(1 – a) = 2 + e – a 

 

Memory Protection  

• Memory protection implemented by associating protection bit with each frame  

• Valid-invalid bit attached to each entry in the page table:  

• “valid” indicates that the associated page is in the process’ logical address space, and is 

thus a legal page  

• “invalid” indicates that the page is not in the process’ logical address space  

• Valid (v) or Invalid (i) Bit In A Page Table  

 



Shared Pages  

Shared code  

• One copy of read-only (reentrant) code shared among processes (i.e., text editors, 

compilers, window systems).  

• Shared code must appear in same location in the logical address space of all processes  

 

Private code and data  

• Each process keeps a separate copy of the code and data  

• The pages for the private code and data can appear anywhere in the logical address space  

 

Shared Pages Example 

 

 

 

 

 

 

 

 

 

Structure of the Page Table  

 

• Hierarchical Paging  

• Hashed Page Tables  

• Inverted Page Tables  

 
Hierarchical Page Tables  

 

• Break up the logical address space into multiple page tables  

• A simple technique is a two-level page table 

 

 

 



Two-Level Page-Table Scheme 

 

Two-Level Paging Example  

 

• A logical address (on 32-bit machine with 1K page size) is divided into:  

• a page number consisting of 22 bits  

• a page offset consisting of 10 bits  

• Since the page table is paged, the page number is further divided into:  

• a 12-bit page number  

• a 10-bit page offset  

Thus, a logical address is as follows:  

where pi is an index into the outer page table, and p2 is the displacement within the page of the 

outer page table  

 

Address-Translation Scheme 

 

 
 

 

 



Three-level Paging Scheme 

 

 

 
 
Hashed Page Tables  

 

• Common in address spaces > 32 bits  

• The virtual page number is hashed into a page table  

• This page table contains a chain of elements hashing to the same location  

• Virtual page numbers are compared in this chain searching for a match  

• If a match is found, the corresponding physical frame is extracted  

 

Hashed Page Table 

 

 
 

 

 

 

 

 

 



Inverted Page Table 

 

• One entry for each real page of memory  

• Entry consists of the virtual address of the page stored in that real memory location, with 

information about the process that owns that page  

• Decreases memory needed to store each page table, but increases time needed to search 

the table when a page reference occurs  

• Use hash table to limit the search to one — or at most a few — page-table entries  

 
Inverted Page Table Architecture 

 

Segmentation  

 

Memory-management scheme that supports user view of memory  

• A program is a collection of segments  

• A segment is a logical unit such as:  

• main program  

• procedure function  

• method  

• object  

• local variables, global variables  

• common block  

• stack  

• symbol table  

• arrays  



User’s View of a Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segmentation Architecture  

 

• Logical address consists of a two tuple:  

• <segment-number, offset>,  

• Segment table – maps two-dimensional physical addresses; each table entry has:  

• base – contains the starting physical address where the segments reside in memory  

• limit – specifies the length of the segment  

• Segment-table base register (STBR) points to the segment table’s location in memory  



• Segment-table length register (STLR) indicates number of segments used by a 

program;  

 

• segment number s is legal if s < STLR  

• Protection  

• With each entry in segment table associate:  

• validation bit = 0 Þ illegal segment  

• read/write/execute privileges  

• Protection bits associated with segments; code sharing occurs at segment level  

• Since segments vary in length, memory allocation is a dynamic storage-allocation 

problem  

• A segmentation example is shown in the following diagram  
 

Segmentation Hardware 

 

Example of Segmentation  

 



Example: The Intel Pentium  

• Supports both segmentation and segmentation with paging  

• CPU generates logical address  

• Given to segmentation unit  

➢ Which produces linear addresses  

• Linear address given to paging unit  

➢ Which generates physical address in main memory  

➢ Paging units form equivalent of MMU 

Logical to Physical Address Translation in Pentium 

 

 

Intel Pentium Segmentation 

 

 

 



Pentium Paging Architecture  

 

Linear Address in Linux 

 

Three-level Paging in Linux 

 

 



UNIT – 5 

VIRTUAL MEMORY 

Objective  

 

• To describe the benefits of a virtual memory system.  

• To explain the concepts of demand paging, page-replacement algorithms, and allocation 

of page frames.  

• To discuss the principle of the working-set model. 

Virtual Memory  

• Virtual memory is a technique that allows the execution of process that may not be 

completely in memory. The main visible advantage of this scheme is that programs can 

be larger than physical memory.  

• Virtual memory is the separation of user logical memory from physical memory this 

separation allows an extremely large virtual memory to be provided for programmers 

when only a smaller physical memory is available ( Fig ).  

 

Following are the situations, when entire program is not required to load fully.  

 

1. User written error handling routines are used only when an error occurs in the data or 

computation.  

2. Certain options and features of a program may be used rarely.  

3. Many tables are assigned a fixed amount of address space even though only a small 

amount of the table is actually used.  

 

The ability to execute a program that is only partially in memory would counter many benefits.  

 

      1. Less number of I/O would be needed to load or swap each user program into memory.  

      2. A program would no longer be constrained by the amount of physical memory that is 

available.  

      3. Each user program could take less physical memory, more programs could be run the same 

time, with a corresponding increase in CPU utilization and throughput  

 

 

 

 

 

 



 

Virtual memory is commonly implemented by demand paging. It can also be implemented in a 

segmentation system. Demand segmentation can also be used to provide virtual memory.  

 

Demand Paging  

 

A demand paging is similar to a paging system with swapping(Fig 5.2). When we want to 

execute a process, we swap it into memory. Rather than swapping the entire process into 

memory.  

When a process is to be swapped in, the pager guesses which pages will be used before the 

process is swapped out again Instead of swapping in a whole process, the pager brings only those 

necessary pages into memory. Thus, it avoids reading into memory pages that will not be used in 

anyway, decreasing the swap time and the amount of physical memory needed.  

Hardware support is required to distinguish between those pages that are in memory and those 

pages that are on the disk using the valid-invalid bit scheme. Where valid and invalid pages can 

be checked checking the bit and marking a page will have no effect if the process never attempts 

to access the pages. While the process executes and accesses pages that are memory resident, 

execution proceeds normally.  

 

Fig. Transfer of a paged memory to continuous disk space 



Access to a page marked invalid causes a page-fault trap. This trap is the result of the operating 

system's failure to bring the desired page into memory. But page fault can be handled as 

following (Fig 5.3): 

 

Fig. Steps in handling a page fault 

 

1. We check an internal table for this process to determine whether the reference was a valid or 

invalid memory access.  

 

2. If the reference was invalid, we terminate the process. If .it was valid, but we have not yet 

brought in that page, we now page in the latter.  

3. We find a free frame.  

 

4. We schedule a disk operation to read the desired page into the newly allocated frame.  

 

5. When the disk read is complete, we modify the internal table kept with the process and the 

page table to indicate that the page is now in memory.  

 

6. We restart the instruction that was interrupted by the illegal address trap. The process can now 

access the page as though it had always been memory.  

 

Therefore, the operating system reads the desired page into memory and restarts the process as 

though the page had always been in memory.  

 

The page replacement is used to make the frame free if they are not in used. If no frame is free 

then other process is called in. 

 

 

 



Advantages of Demand Paging:  

1. Large virtual memory.  

 

2. More efficient use of memory.  
 

3. Unconstrained multiprogramming. There is no limit on degree of multiprogramming.  

 

Disadvantages of Demand Paging:  

1. Number of tables and amount of processor over head for handling page interrupts are greater 

than in the case of the simple paged management techniques.  

 

2. due to the lack of an explicit constraints on a jobs address space size.  
 

Page Replacement Algorithm  

 
There are many different page replacement algorithms. We evaluate an algorithm by running it 

on a particular string of memory reference and computing the number of page faults. The string 

of memory references is called reference string. Reference strings are generated artificially or by 

tracing a given system and recording the address of each memory reference. The latter choice 

produces a large number of data.  

1. For a given page size we need to consider only the page number, not the entire address.  

2. if we have a reference to a page p, then any immediately following references to page p will 

never cause a page fault. Page p will be in memory after the first reference; the immediately 

following references will not fault.  

Eg:- consider the address sequence  

 

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103, 0104, 0101, 0610, 0102, 

0103, 0104, 0104, 0101, 0609, 0102, 0105  

and reduce to 1, 4, 1, 6,1, 6, 1, 6, 1, 6, 1  

 

To determine the number of page faults for a particular reference string and page replacement 

algorithm, we also need to know the number of page frames available. As the number of frames 

available increase, the number of page faults will decrease. 

FIFO Algorithm  

 

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm 

associates with each page the time when that page was brought into memory. When a page must 

be replaced, the oldest page is chosen. We can create a FIFO queue to hold all pages in memory.  



 

The first three references (7, 0, 1) cause page faults, and are brought into these empty eg. 7, 0, 1, 

2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 and consider 3 frames. This replacement means that the next 

reference to 0 will fault. Page 1 is then replaced by page 0. 

Optimal Algorithm  

 
An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An 

optimal page-replacement algorithm exists, and has been called OPT or MIN. It is simply 

Replace the page that will not be used for the longest period of time.  

 

Now consider the same string with 3 empty frames.  

 

The reference to page 2 replaces page 7, because 7 will not be used until reference 15, whereas 

page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page 1, as page 1 will 

be the last of the three pages in memory to be referenced again. Optimal replacement is much 

better than a FIFO.  

 

The optimal page-replacement algorithm is difficult to implement, because it requires future 

knowledge of the reference string.  

 

LRU Algorithm  

 
The FIFO algorithm uses the time when a page was brought into memory; the OPT algorithm 

uses the time when a page is to be used. In LRU replace the page that has not been used for the 

longest period of time.  

 

LRU replacement associates with each page the time of that page's last use. When a page must be 

replaced, LRU chooses that page that has not been used for the longest period of time.  

 

Let SR be the reverse of a reference string S, then the page-fault rate for the OPT algorithm on S 

is the same as the page-fault rate for the OPT algorithm on SR. 

 

 

 

 



LRU Approximation Algorithms  

Some systems provide no hardware support, and other page-replacement algorithm. Many 

systems provide some help, however, in the form of a reference bit. The reference bit for a page 

is set, by the hardware, whenever that page is referenced. Reference bits are associated with each 

entry in the page table Initially, all bits are cleared (to 0) by the operating system. As a user 

process executes, the bit associated with each page referenced is set (to 1) by the hardware.  

 

Additional-Reference-Bits Algorithm  

The operating system shifts the reference bit for each page into the high-order or of its 5-bit byte, 

shifting the other bits right 1 bit, discarding the low-order bit.  

These 5-bit shift registers contain the history of page use for the last eight time periods. If the 

shift register contains 00000000, then the page has not been  

used for eight time periods; a page that is used at least once each period would have a shift 

register value of 11111111.  

 

Second-Chance Algorithm  

 

The basic algorithm of second-chance replacement is a FIFO replacement algorithm. When a page 

gets a second chance, its reference bit is cleared and its arrival e is reset to the current time.  

 

Enhanced Second-Chance Algorithm  

 

The second-chance algorithm described above can be enhanced by considering troth the 

reference bit and the modify bit as an ordered pair.  

 

1. (0,0) neither recently used nor modified best page to replace.  

2. (0,1) not recently used but modified not quite as good, because the page will need to be 

written out before replacement.  

3. (1,0) recently used but clean probably will be used again soon.  

4. (1,1) recently used and modified probably will be used again, and write out will be needed 

before replacing it  

 

 



Counting Algorithms  

 

There are many other algorithms that can be used for page replacement.  

 

• LFU Algorithm: The least frequently used (LFU) page-replacement algorithm requires that the 

page with the smallest count be replaced. This algorithm suffers from the situation in which a 

page is used heavily during the initial phase of a process, but then is never used again.  

 

 

• MFU Algorithm: The most frequently used (MFU) page-replacement algorithm is based on 

the argument that the page with the smallest count was probably just brought in and has yet to be 

used.  

 

Page Buffering Algorithm  

 

When a page fault occurs, a victim frame is chosen as before. However, the desired page is read 

into a free frame from the pool before the victim is written out.  

 

This procedure allows the process to restart as soon as possible, without waiting for the victim 

page to be written out. When the victim is later written out, its frame is added to the free-frame 

pool.  

 

When the FIFO replacement algorithm mistakenly replaces a page mistakenly replaces a page 

that is still in active use, that page is quickly retrieved from the free-frame buffer, and no I/O is 

necessary. The free-frame buffer provides protection against the relatively poor, but simple, 

FIFO replacement algorithm. 

 

 

 

 

 

 



UNIT VI 

Principles of deadlock 

To develop a description of deadlocks, which prevent sets of concurrent processes from 

completing their tasks. To present a number of different methods for preventing or avoiding 

deadlocks in a computer system  

 

The Deadlock Problem  

 
A set of blocked processes each holding a resource and waiting to acquire a resource held by 

another process in the set  

Example  

System has 2 disk drives  

P1 and P2 each hold one disk drive and each needs another one  

Example  

semaphores A and B, initialized to 1  

 
P0       P1  

wait (A);      wait(B)  

wait (B);      wait(A) 

 

 

 

Traffic only in one direction  

Each section of a bridge can be viewed as a resource  

If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)  

Several cars may have to be backed up if a deadlock occurs  



Starvation is possible  

Note – Most OS do not prevent or deal with deadlocks 

System Model  
 

Resource types R1, R2, . . ., Rm  

CPU cycles, memory space, I/O devices  

Each resource type Ri has Wi instances.  

Each process utilizes a resource as follows:  

request  

use  

release  

 

Deadlock Characterization  

 
Deadlock can arise if four conditions hold simultaneously  

Mutual exclusion: only one process at a time can use a resource  

Hold and wait: a process holding at least one resource is waiting to acquire additional resources 

held by other processes  

No preemption: a resource can be released only voluntarily by the process holding it, after that 

process has completed its task  

Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting 

for a resource that is held by P1, P1 is waiting for a resource that is held by  

P2, …, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting for a resource that is 

held by P0.  

 

 

Resource-Allocation Graph  

 
A set of vertices V and a set of edges E  

V is partitioned into two types:  

P = {P1, P2, …, Pn}, the set consisting of all the processes in the system  

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system  

request edge – directed edge P1 → Rj  

assignment edge – directed edge Rj → Pi 



 

 

 

 

 

 

 

Pi is holding an instance of R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resource Allocation Graph With A Deadlock 

 



 

 

 

 

Graph With A Cycle But No Deadlock 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Facts  

If graph contains no cycles Þ no deadlock If graph contains a cycle if only one instance per 

resource type, then deadlock  

if several instances per resource type, possibility of deadlock  

Methods for Handling Deadlocks  

Ensure that the system will never enter a deadlock state Allow the system to enter a deadlock 

state and then recover Ignore the problem and pretend that deadlocks never occur in the system; 

used by most operating systems, including UNIX  

Deadlock Prevention  

Restrain the ways request can be made  

Mutual Exclusion – not required for sharable resources; must hold for non-sharable resources  

Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold 

any other resources Require process to request and be allocated all its resources before it begins 

execution, or allow process to request resources only when the process has none Low resource 

utilization; starvation possible  

 

 



No Preemption –  

If a process that is holding some resources requests another resource that cannot be immediately 

allocated to it, then all resources currently being held are released  

Preempted resources are added to the list of resources for which the process is waiting  

Process will be restarted only when it can regain its old resources, as well as the new ones that it 

is requesting  

Circular Wait – impose a total ordering of all resource types, and require that each process 

requests resources in an increasing order of enumeration 

Deadlock Avoidance  

Requires that the system has some additional a priori information available  

Simplest and most useful model requires that each process declare the maximum number of 

resources of each type that it may need  

The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure 

that there can never be a circular-wait condition  

Resource-allocation state is defined by the number of available and allocated resources, and the 

maximum demands of the processes  

Safe State  

When a process requests an available resource, system must decide if immediate allocation 

leaves the system in a safe state  

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes is the 

systems such that for each Pi, the resources that Pi can still request can be satisfied by currently 

available resources + resources held by all the Pj, with j < i That is:  

If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished  

When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and 

terminate  

When Pi terminates, Pi +1 can obtain its needed resources, and so on  

Basic Facts  

If a system is in safe state Þ no deadlocks If a system is in unsafe state Þ possibility of deadlock 

Avoidance Þ ensure that a system will never enter an unsafe state.  

 

 

 

 



Safe, Unsafe , Deadlock State 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Avoidance algorithms  

Single instance of a resource type  

Use a resource-allocation graph  

Multiple instances of a resource type  

Use the banker’s algorithm 

 

Resource-Allocation Graph Scheme  

Claim edge Pi -> Rj indicated that process Pj may request resource Rj; represented by a dashed 

line Claim edge converts to request edge when a process requests a resource Request edge 

converted to an assignment edge when the resource is allocated to the process When a resource is 

released by a process, assignment edge reconverts to a claim edge Resources must be claimed a 

priori in the system 

 

Resource-

Allocation Graph 

 
 

 

 

 

 

 

 



Unsafe State In Resource-Allocation Graph 

 

 

 
 

 

 

 

Resource-Allocation Graph Algorithm  

Suppose that process Pi requests a resource Rj. The request can be granted only if converting the 

request edge to an assignment edge does not result in the formation of a cycle in the resource 

allocation graph  

Banker’s Algorithm  

Multiple instances Each process must a priori claim maximum use When a process requests a 

resource it may have to wait When a process gets all its resources it must return them in a finite 

amount of time  

Data Structures for the Banker’s Algorithm  

Let n = number of processes, and m = number of resources types.  

Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj 

available  

Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource 

type Rj  

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj  

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task  

Need [i,j] = Max[i,j] – Allocation [i,j]  

 

 



Safety Algorithm  

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:  

           Work = Available  

          Finish [i] = false for i = 0, 1, …, n- 1  

2. Find and i such that both:  

        (a) Finish [i] = false 

       (b) Needi <= Work  

        If no such i exists, go to step 4  

3. Work = Work + Allocationi  

        Finish[i] = true go to step 2  

4. If Finish [i] == true for all i, then the system is in a safe state  

 

Resource-Request Algorithm for Process Pi  

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of 

resource type Rj 

1. If Requesti <= Needi  go to step 2. Otherwise, raise error condition, since process has 

exceeded its maximum claim  

2. If Requesti <= Available, go to step 3. Otherwise Pi must wait, since resources are not 

available  

3. Pretend to allocate requested resources to Pi by modifying the state as follows:  

              Available = Available – Request;  

             Allocationi = Allocationi + Requesti;  

            Needi = Needi – Requesti;  

If safe Þ the resources are allocated to Pi  

If unsafe Þ Pi must wait, and the old resource-allocation state is restored 

 

 

 

 

 

 

 



Example of Banker’s Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 
Single Instance of Each Resource Type   

Maintain wait-for graph  

Nodes are processes  

Pi -> Pj if Pi is waiting for Pj  

Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there 

exists a deadlock  

An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the 

number of vertices in the graph 

 

 

 

 

 

 



 

Resource-Allocation Graph and Wait-for Graph 

 
 
Resource-Allocation Graph      Corresponding wait-for graph  

 

Several Instances of a Resource Type  

 

Available: A vector of length m indicates the number of available resources of each type. 

Allocation: An n x m matrix defines the number of resources of each type currently allocated to each 

process. 

Request: An n x m matrix indicates the current request of each process. If Request [ij] = k, then 

process Pi is requesting k more instances of resource type. Rj.  

 

Detection Algorithm  

 

1. Let Work and Finish be vectors of length m and n, respectively Initialize:  

     (a) Work = Available (b) For i = 1,2, …, n, if Allocationi> 0, then Finish[i] = false; 

otherwise, Finish[i] = true2.  

2.Find an index i such that both:  

     (a) Finish[i] == false 

      (b) Requesti < Work 

     If no such i exists, go to step 4  

3. Work = Work + Allocationi 

4. Finish[i] = true go to step 24. If Finish[i] == false, for some i, 1 £ i £ n, then the system is in 

deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked  



 

Algorithm requires an order of O(m x n2) operations to detect whether the system is in 

deadlocked state 

 

Example of Detection Algorithm  
Five processes P0 through P4; three resource types A (7 instances), B (2 instances), and C (6 

instances)  

Snapshot at time T0: 

 

 
State of system?  

Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; 

requests  

Deadlock exists, consisting of processes P1, P2, P3, and P4  

 

Detection-Algorithm Usage  

 

When, and how often, to invoke depends on:  

How often a deadlock is likely to occur?  

How many processes will need to be rolled back?  

one for each disjoint cycle If detection algorithm is invoked arbitrarily, there may be many 

cycles in the resource graph and so we would not be able to tell which of the many deadlocked 

processes “caused” the deadlock  

Recovery from Deadlock: Process Termination  

 
Abort all deadlocked processes Abort one process at a time until the deadlock cycle is eliminated  

In which order should we choose to abort?  

Priority of the process  

How long process has computed, and how much longer to completion  



Resources the process has used  

Resources process needs to complete  

How many processes will need to be terminated  

Is process interactive or batch?  

 

Recovery from Deadlock: Resource Preemption  

 

Selecting a victim – minimize cost  

Rollback – return to some safe state, restart process for that state  

Starvation – same process may always be picked as victim, include number of rollback in cost 

factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT V 

FILE SYSTEM INTERFACE 

 
 The Concept Of a File  

A file is a named collection of related information that is recorded on secondary storage. The 

information in a file is defined its creator. Many different types of information may be stored in a 

file.  

File attributes:-  

A file is named and for the user’s convince is referred to by its name. A name is usually a string 

of characters. One user might create file, where as another user might edit that file by specifying 

its name. There are different types of attributes.  

1)name:- the name can be in the human readable form.  

2)type:- this information is needed for those systems that support different types.  

3)location:- this information is used to a device and to the location of the file on that  

device.  

4)size:- this indicates the size of the file in bytes or words.  

5)protection:-  

6)time, date, and user identifications:-  

the information about all files is kept in the directory structure, that also resides on secondary 

storage.  

File operations:-  

Creating a file:-  

Two steps are necessary to create a file first, space in the file system must be found for the file. 

Second , an entry for the new file must be made in the directory. The directory entry records the 

name of the file and the location in the system.  

Writing a file:-  

To write a file give the name of the file, the system search the directory to find the location of the 

file. The system must keep the writer pointer to the location in the file where the next write is to 

take place. The write pointer must be updated whenever a write occurs.  

Reading a file:- to read from a file, specifies the name of the file and directory is search for the 

associated directory entry, and the system needs to keep read pointer to the location in the file 

where the next read is to take place. Once the read has taken place, read pointer is updated.  

Repositioning with in a file:-  



The directory is searched for the appropriate entry and the current file position is set to given 

value. this is also known as a file seek.  

Deleting a file:- to delete a file , we search the directory for the name file. Found that file in the 

irectory entry, we release all file space and erase the directory entry.  

Truncate a file:- this function allows all attributes to remain unchanged(except for file length) 

but for the file to be reset to length zero.  

Appending:- add new information to the end of an existing file .  

Renaming:- give new name to an existing file.  

Open a file:-if file need to be used, the first step is to open the file, using the open system call.  

Close:- close is a system call used to terminate the use of an already used file. 

 

File Types:-  

A common technique for implementing file type is to include the type as part of the file name. 

The name is split in to two parts  

1) the name 2) and an extension .  

the system uses the extension to indicate the type of the file and the type of operations that can 

be done on that file.  

 ACCESSMETHODS:-  

There are several ways that the information in the file can be accessed.  

1)sequential method 2) direct access method 3) other access methods.  

1)sequential access method:-  

the simplest access method is S.A. information in the file is processed in order, one after the 

other. the bulk of the operations on a file are reads & writes. It is based on a tape model of a file.  

 

2)Direct access:- or relative access:-  

a file is made up of fixed length records, that allow programs to read and write record rapidly in 

no particular order. For direct access, file is viewed as a numbered sequence of blocks or records. 

A direct access file allows, blocks to be read & write. So we may read block15, block 54 or write 

block10. there is no restrictions on the order of reading or writing for a direct access file. It is 

great useful for immediate access to large amount of information. The file operations must be 

modified to include the block number as a parameter. We have read n, where n is the block 

number.  

 



3)other access methods:-  

the other access methods are based on the index for the file. The indexed contain pointers to the 

various blocks. To find an entry in the file , we first search the index and then use the pointer to 

access the file directly and to find the desired entry. With large files. The index file itself, may 

become too large to be kept in memory. One solution is to create an index for the index file. The 

primary index file would contain pointers to secondary index files which would point to the 

actual data items.  

7.3 Directory Structures:-  

operations that are be on a directory (read in text book)  

single level directory:-  

the simple directory structure is the single level directory. All files are contained in the same  

directory. Which is easy to understand. Since all files are in same directory, they must have 

unique names.  

In a single level directory there is some limitations. When the no.of files increases or when there 

is more than one user some problems can occurs. If the no.of  files increases, it becomes difficult 

to remember the names of all the files.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two-level directory:-  

The major disadvantages to a single level directory is the confusion of file names between 

different users. The standard solution is to create separate directory for each user. In 2-level 

directory structure, each user has her own user file directory(ufd). Each ufd  has a similar 

structure, the user first search the master file directory . the mfd is indexed by user name and 

each entry point to the ufd for that user. 

 

Silberschatz and Galvin©199910.12Operating System Concepts

Single-Level Directory

• A single directory for all users.

• Naming problem

• Grouping problem



To create a file for a user, the O.S search only that user’s ufd to find whether another file of that 

name exists. To delete a file the O.S only search to the local ufd and it can not accidentally delete 

another user’s file that has the same name. This solves the name collision problem, but it still 

have another. This is disadvantages when the user wants to cooperate on some task and to access 

one another’s file . some systems simply do not allow local user files to be accessed by other 

user. Any file is accessed by using path name. Here the user name and a file name defines a path 

name.  

Ex:- user1/ob  

In MS-DOS a file specification is  

C:/directory name/file name  

 

Silberschatz and Galvin©199910.13Operating System Concepts

Two-Level Directory

• Separate directory for each user.

• Path name

• Can have the saem file name for different user

• Efficient searching

• No grouping capability

 
 

Tree structured directory:-  

This allows users to create their own subdirectories and to organize their files accordingly. here 

the tree has a root directory. And every file in the system has a unique path name. A path name is 

the path from the root, through all the subdirectories to a specified file.FIG 10.9. A directory 

contains a set of subdirectories or files. A directory is simply another file, but it is treated in a 

special way. Here the path names can be of two types. 1)absolute path and 2) relative path. An 

absolute path name begins at the root and follows a path down to the specified file, giving the 

directory name on the path.  

Ex:- root/spell/mail/prt/first.  

A relative pathname defines a path from the current directory ex:- prt/first is relative path name.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cyclic- graph directory:-  

Consider two programmers who are working on a joint project. The files associated with that 

project can be stored in a sub directory , separating them from other projects and files of the two 

programmers. The common subdirectory is shared by both programmers. A shared directory or 

file will exist in the file system in two places at once. Notice that a shared file is not the same as 

two copies of the file with two copies, each programmer can view the copy rather than the 

original but if one programmer changes the file the changes will not appear in the others copy 

with a shared file there is only one actual file, so any changes made by one person would be 

immediately visible to the other. A tree structure prohibits the sharing of files or directories. An 

acyclic graph allows directories to have shared subdirectories and files FIG 10.10 . it is more 

complex and more flexible. Also several problems may occurs at the traverse and deleting the 

file contents. 
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Acyclic-Graph Directories
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File System Mounting  

A file system must be mounted before it can be accessed  

A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point  

(a) Existing.      (b) Unmounted Partition  
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File Sharing  

Sharing of files on multi-user systems is desirable Sharing may be done through a protection 

scheme On distributed systems, files may be shared across a network Net work File System 

(NFS) is a common distributed file sharing method  

File Sharing – Multiple Users  

User IDs identify users, allowing permissions and protections to be per user Group 

IDs allow users to be in groups, permitting group access rights  

File Sharing – Remote File Systems  

Uses networking to allow file system access between systems Manually via programs like FTP  

Automatically, seamlessly using distributed file systems Semi automatically via the world wide 

web Client-server model allows clients to mount remote file systems from servers Server can 

serve multiple clients Client and user-on-client identification is insecure or complicated NFS is 

standard UNIX client-server file sharing protocol CIFS is standard Windows protocol Standard 

operating system file calls are translated into remote calls Distributed Information Systems 

(distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified 

access to information needed for remote computing  

File Sharing – Failure Modes  

Remote file systems add new failure modes, due to network failure, server failure Recovery from 

failure can involve state information about status of each remote Request Stateless protocols 

such as NFS include all information in each request, allowing easy recovery but less security  

File Sharing – Consistency Semantics  



Consistency semantics specify how multiple users are to access a shared file simultaneously 

Similar to Ch 7 process synchronization algorithms Tend to be less complex due to disk I/O 

and network latency (for remote file systems Andrew File System (AFS) implemented complex 

remote file sharing semantics Unix file system (UFS) implements:  

• Writes to an open file visible immediately to other users of the same open file  

• Sharing file pointer to allow multiple users to read and write concurrently AFS has 

session semantics  

• Writes only visible to sessions starting after the file is closed  

Protection  

File owner/creator should be able to control:  

what can be done by whom Types of access  

Read  

Write  

Execute  

Append  

Delete  

List  

Protection:- 

When the information is kept in the system the major worry is its protection from the both 

physical damage (Reliability) and improper access(Protection). The reliability is generally 

provided by duplicate copies of files. The protection can be provided in many ways . for some 

single system user, we might provide protection by physically removing the floppy disks . in a 

multi-user systems, other mechanism are needed.  

1) Types of access:-  

if the system do not permit access to the files of other users, protection is not needed. Protection 

mechanism provided by controlling accessing. This can be provided by types of file access. 

Access is permitted or denied depending on several factors. Suppose we mentioned read that file 

allows only for read .  

Read:- read from the file.  

Write:- write or rewrite the file.  

Execute:- load the file in to memory and execute it.  

Append:- write new information at the end of the file.  

Delete:- delete the file and free its space for possible reuse. 



 

FILE SYSTEM IMPLEMENTATION  

File allocation methods:-  

There are 3 major methods of allocating disk space.  

1) Contiguous allocation:-  

1) The contiguous allocation method requires each file to occupy a set of contiguous block on the 

disk.  

2) Contiguous allocation of a file is defined by the disk address and length of the first block. If 

the file is ‘n’ block long and starts at location ‘b’ , then it occupies blocks b,b+1,b+2,…..,b+n-1;  

3) The directory entry for each file indicates the address of the starting block and length of the 

area allocated for this file.   

4) Contiguous allocation of file is very easy to access. For the sequential access , the file system 

remembers the disk address of the last block referenced and, when necessary read next block. 

For direct access to block ‘i’ of a file that starts at block ‘b’ , we can immediately access block  

b+i. Thus both sequential and direct access can be supported by contagious allocation.  

5) One difficulty with this method is finding space for a new file.  

6) Also there are many problems with this method  

a) external fragmentation:- files are allocated and deleted , the free disk space is broken in to 

little pieces. The E.F exists when free space is broken in to chunks(large piece) and these chunks 

are not sufficient for a request of new file. There is a solution for E.F i.e compaction. All free 

space compact in to one contiguous space. But the cost of compaction is time.  

b) Another problem is determining how much space is needed for a file. When file is created the 

creator must specifies the size of  that file. This becomes to big problem. Suppose if we allocate  

too little space to a file , some times it may not sufficient. Suppose if we allocate large space 

some times space is wasted.  

c) Another problem is if one large file is deleted, that large space is becomes to empty. Another 

file is loaded in to that space whose size is very small then some space is wasted . that wastage of 

space is called internal fragmentation.  

 

 



 

 

2) Linked allocation:-  

1) Linked allocation solves all the problems of contagious allocation. With linked allocation , 

each file is a linked list of disk blocks, the disk block may be scattered any where on the disk.  

2) The directory contains a pointer to the first and last blocks of the file. Fig11.4  

Ex:- a file have five blocks start at block 9, continue at block 16,then block 1, block 10 and 

finally block 25. each block contains a ponter to the next block. These pointers are not available 

to the user.  

3) To create a new file we simply creates a new entry in directory. With linked allocation, each 

directory entry has a pointer to the first disk block of the file.  

3) There is no external fragmentation with linked allocation. Also there is no need to declare the 

size of a file when that file is created. A file can continue to grows as long as there are free 

blocks. 

4) But it have disadvantage. The major problem is that it can be used only for sequential access-

files.  

5) To find the I th block of a file , we must start at the beginning of that file, and follow the 

pointers until we get to the I th block. It can not support the direct access.  

6) Another disadvantage is it requires space for the pointers. If a pointer requires 4 bytes out of 

512 byte block, then 0.78% of disk is being used for pointers, rather than for information.  

7) The solution to this problem is to allocate blocks in to multiples, called clusters and to allocate 

the clusters rather than blocks.  



8) Another problem is reliability. The files are linked together by pointers  scattered all over the 

disk what happen if a pointer were lost or damaged.  

FAT( file allocation table):-  

An important variation on the linked allocation method is the use of a file  allocation table.  

The table has one entry for each disk block, and is indexed by block number. The FAT is used 

much as is a linked list. The directory entry contains the block number of the first block of the 

file. The  

table entry contains the block number then contains the block number of the next block in the 

file. This chain continuous until the last block, which has a special end of file values as the table 

entry. Unused blocks are indicated by a ‘0’ table value. Allocation a new block to a file is a 

simple. First finding the first 0-value table entry, and replacing the previously end of file value 

with the address of the new block. The 0 is then replaced with end of file value.  

 

 

 

3)Indexed allocation:-  

1) linked allocation solves the external fragmentation and size declaration problems of 

contagious allocation. How ever in the absence of a FAT , linked allocation can not support 

efficient direct access.  

2) The pointers to the blocks are scattered with the blocks themselves all over the disk and need 

to be retrieved in order.  



3) Indexed allocation solves this problem by bringing all the pointers together in to one location 

i.e the index block.  

4) Each file has its own index block ,which is an array of disk block addresses. The I th entry in 

the index block points to the ith block of the file.  

5) The directory contains the address of the index block. Fig 11.6 To read the ith block we use 

the pointer in the ith index block entry to find and read the desired block.  

6) When the file is created, all pointers in the index block are set to nil. When the ith block is 

first written, a block is obtained from the free space manager, and  its address is put in the ith 

index block entry.  

7) It supports the direct access with out suffering from external fragmentation, but it suffer from 

the wasted space. The pointer overhead of the index block is generally greater than the pointer 

over head of linked allocation. 

 

7.8:Free space management:-  

1) to keep track of free disk space, the system maintains a free space list. The free space list 

records all disk blocks that are free.  

2) To create a file we search the free space list for the required amount of space, and allocate that 

space to the new file. This space is then removed from the free space  list.  

3) When the file is deleted , its disk space is added to the free space list. There are many methods 

to find the free space.  



1) Bit vector:-  

The free space list is implemented as a bit map or bit vector. Each block is represented by 1 bit. 

If the block is free the bit is 1 if the block is allocated the bit is 0.  

Ex:- consider a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25, are free and  

rest of blocks are allocated the free space bit map would be  

001111001111110001100000010000……..  

the main advantage of this approach is that it is relatively simple and efficient to find the first 

free block or ‘n’ consecutive free blocks on the disk  

2) Linked list:-  

Another approach is to link together all the free disk blocks, keeping a pointer to the first free 

block in a special location on the disk and caching it in memory. This first block contain a 

pointer to the next free disk block, and so on. How ever this scheme is not efficient to traverse 

the list, we must read each block, which requires I/O time. Disk space is also wasted to maintain 

the pointer to next free space.  

3) Grouping:-  

Another method is store the addresses of ‘n’ free blocks in the first free block. The first (n-1) of 

these blocks are actually free. The last block contains the addresses of another ‘n’ free blocks 

and so on. Fig 11.8 Advantages:- the main advantage of this approach is that the addresses of a 

large no.of locks can be found quickly.  

4) Counting:-  

Another approach is counting. Generally several contiguous blocks may be allocated or freed 

simultaneously. Particularly when space is allocated with the contiguous allocation algorithm 

rather than keeping a list of ‘n’ free disk address. We can keep the address of first free block and 

the number ‘n’ of free contiguous blocks that follow the first block. Each entry in the free space 

list then consists of a disk address and a count.  

7.9:Directory Implementation:-  

1) Linear list:-  

1) The simple method of implement ting a directory is to use a linear list of file names with 

pointers to the data blocks.  

2) A linear list of directory entries requires a linear search to find a particular entry.  

3) This method is simple to program but is time consuming to execute.  

4) To create a new file, we must first search the directory to be sure that no existing file has the 

same name. Then, we add a new entry at the end of the directory. 



5) To delete a file we search the directory for the named file, then release the space allocated to 

it.  

6) To reuse directory entry, we can do one of several things.  

7) We can mark the entry as unused or we can attach it to a list of free directory entries. 

Disadvantage:- the disadvantage of a linear list of directory entries is the linear search to find a 

file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MASS-STORAGE STRUCTURE 

 
Mass-Storage Systems  

Describe the physical structure of secondary and tertiary storage devices and the resulting effects 

on the uses of the devices Explain the performance characteristics of mass-storage devices 

Discuss operating-system services provided for mass storage, including RAID and HSM  

 

8.1:Overview of Mass Storage Structure  

Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to 

200 times per second Transfer rate is rate at which data flow between drive and computer 

Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) 

and time for desired sector to rotate under the disk head (rotational latency) Head crash results 

from disk head making contact with the disk surface That’s bad Disks can be removable Drive 

attached to computer via I/O bus Busses vary, including EIDE, ATA, SATA, USB, Fiber 

Channel, SCSI Host controller in computer uses bus to talk to disk controller built into drive or 

storage Array 

 

Moving-head Disk Mechanism 

 

 
 

Magnetic tape Was early secondary-storage medium Relatively permanent and holds large 

quantities of data Access time slow Random access ~1000 times slower than disk Mainly used 



for backup, storage of infrequently-used data, transfer medium between systems Kept in spool 

and wound or rewound past read-write head Once data under head, transfer rates comparable to 

disk 20-200GB typical storage Common technologies are 4mm, 8mm, 9mm, LTO-2 and SDLT  

8.2:Disk Structure  

Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical 

block is the smallest unit of transfer The 1-dimensional array of logical blocks is mapped to the 

sectors of the disk sequentially Sector 0 is the first sector of the first track on the outermost 

cylinder Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, 

and then through the rest of the cylinders from outermost to innermost  

8.3:Disk Attachment  

Host-attached storage accessed through I/O ports talking to I/O busses SCSI itself is a bus, up to 

16 devices on one cable, SCSI initiator requests operation and SCSI targets perform tasks Each 

target can have up to 8 logical units (disks attached to device controller FC is high-speed serial 

architecture Can be switched fabric with 24-bit address space – the basis of storage area 

networks (SANs) in which many hosts attach to many storage units Can be arbitrated loop (FC-

AL) of 126 devices  

Network-Attached Storage  

Network-attached storage (NAS) is storage made available over a network rather than over a 

local connection (such as a bus) NFS and CIFS are common protocols Implemented via remote 

procedure calls (RPCs) between host and storage New iSCSI protocol uses IP etwork to carry the 

SCSI protocol 

 

 

 
 

 



Storage Area Network  

Common in large storage environments (and becoming more common) Multiple hosts attached 

to multiple storage arrays – flexible 

 

 

8.4:Disk Scheduling  
The operating system is responsible for using hardware efficiently — for the disk  

drives, this means having a fast access time and disk bandwidth Access time has two major 

components Seek time is the time for the disk are to move the heads to the cylinder containing the 

desired sector Rotational latency is the additional time waiting for the disk to rotate the desired sector 

to the disk head Minimize seek time Seek time » seek distance Disk bandwidth is the total number of 

bytes transferred, divided by the total time between the first request for service and the completion of 

the last transfer Several algorithms exist to schedule the servicing of disk I/O requests We illustrate 

them with a request queue (0-199)  

98, 183, 37, 122, 14, 124, 65, 67  

Head pointer 53 

FCFS 

Illustration shows total head movement of 640 cylinders 

 



SSTF  

Selects the request with the minimum seek time from the current head position SSTF scheduling 

is a form of SJF scheduling; may cause starvation of some requests Illustration shows total head 

movement of 236 cylinders  

 

 

SCAN  

The disk arm starts at one end of the disk, and moves toward the other end, servicing requests 

until it gets to the other end of the disk, where the head movement is reversed and servicing 

continues. SCAN algorithm Sometimes called the elevator algorithm 

Illustration shows total head movement of 208 cylinders  

C-SCAN  

Provides a more uniform wait time than SCAN The head moves from one end of the disk to the 

other, servicing requests as it goes When it reaches the other end, however, it immediately 

returns to the beginning of the disk, without servicing any requests on the return trip Treats the 

cylinders as a circular list that wraps around from the last cylinder to the first one  



 

 

C-LOOK  

Version of C-SCAN Arm only goes as far as the last request in each direction, then reverses  

direction immediately, without first going all the way to the end of the disk  

 

 

Selecting a Disk-Scheduling Algorithm  

SSTF is common and has a natural appeal SCAN and C-SCAN perform better for systems that 

place a heavy load on the disk Performance depends on the number and types of requests 

Requests for disk service can be influenced by the file-allocation method The disk-scheduling 

algorithm should be written as a separate module of the operating system, allowing it to be 



replaced with a different algorithm if necessary Either SSTF or LOOK is a reasonable choice for 

the default algorithm  

Disk Management  

Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk 

controller can read and write To use a disk to hold files, the operating system still needs to record 

its own data structures on the disk Partition the disk into one or more groups of cylinders Logical 

formatting or “making a file system” To increase efficiency most file systems group blocks into 

clusters  

Disk I/O done in blocks  

File I/O done in clusters  

Boot block initializes system The bootstrap is stored in ROM Bootstrap loader program  

Methods such as sector sparing used to handle bad blocks  

Booting from a Disk in Windows 2000  

Swap-Space Management  

Swap-space — Virtual memory uses disk space as an extension of main memory Swap-space can 

be carved out of the normal file system, or, more commonly, it can be in a separate disk partition 

Swap-space management 4.3BSD allocates swap space when process starts; holds text segment 

(the program) and data segment Kernel uses swap maps to track swap-space use Solaris 2 

allocates swap space only when a page is forced out of physical memory, not when the virtual 

memory page is first created  

Data Structures for Swapping on Linux  

Systems  

RAID Structure  

RAID – multiple disk drives provides reliability via redundancy Increases the mean time to 

failure Frequently combined with NVRAM to improve write performance RAID is arranged into 

six different levels Several improvements in disk-use techniques involve the use of multiple 

disks working cooperatively Disk striping uses a group of disks as one storage Unit RAID 

schemes improve performance and improve the reliability of the storage system by storing 

redundant data Mirroring or shadowing (RAID 1) keeps duplicate of each disk Striped mirrors 

(RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and high reliability 

Block interleaved parity (RAID 4, 5, 6) uses much less redundancy RAID within a storage array 

can still fail if the array fails, so automatic replication of the data between arrays is common 



Frequently, a small number of hot-spare disks are left unallocated, automatically replacing a 

failed disk and having data rebuilt onto them RAID (0 + 1) and (1 + 0)  

Extensions  

RAID alone does not prevent or detect data corruption or other errors, just disk failures Solaris 

ZFS adds checksums of all data and metadata Checksums kept with pointer to object, to detect if 

object is the right one and whether it changed Can detect and correct data and metadata 

corruption ZFS also removes volumes, partitions Disks allocated in pools File systems with a 

pool share that pool, use and release space like “malloc” and “free” memory allocate / release 

calls  

ZFS Checksums All Metadata and Data  

Traditional and Pooled Storage  

Stable-Storage Implementation  

Write-ahead log scheme requires stable storage To implement stable storage: Replicate 

information on more than one nonvolatile storage media with independent failure modes Update 

information in a controlled manner to ensure that we can recover the stable data after any failure 

during data transfer or recovery  

Tertiary Storage Devices  

Low cost is the defining characteristic of tertiary storage Generally, tertiary storage is built using 

removable media Common examples of removable media are floppy disks and CD-ROMs; other 

types are available  

Removable Disks  

Floppy disk — thin flexible disk coated with magnetic material, enclosed in a protective plastic 

case Most floppies hold about 1 MB; similar technology is used for removable disks that hold 

more than 1 GB Removable magnetic disks can be nearly as fast as hard disks, but they are at a 

greater risk of damage from exposure A magneto-optic disk records data on a rigid platter coated 

with magnetic material Laser heat is used to amplify a large, weak magnetic field to record a bit 

Laser light is also used to read data (Kerr effect) The magneto-optic head flies much farther from 

the disk surface than a magnetic disk head, and the magnetic material is covered with a 

protective layer of plastic or glass; resistant to head crashes Optical disks do not use magnetism; 

they employ special materials that are altered by laser light  

WORM Disks  

The data on read-write disks can be modified over and over WORM (“Write Once, Read Many 

Times”) disks can be written only once Thin aluminum film sandwiched between two glass or 



plastic platters To write a bit, the drive uses a laser light to burn a small hole through the 

aluminum; information can be destroyed by not altered Very durable and reliable Read-only 

disks, such ad CD-ROM and DVD, com from the factory with the data pre-recorded  

Tapes  

Compared to a disk, a tape is less expensive and holds more data, but random access is much 

slower Tape is an economical medium for purposes that do not require fast random access, e.g., 

backup copies of disk data, holding huge volumes of data Large tape installations typically use 

robotic tape changers that move tapes between tape drives and storage slots in a tape library 

stacker – library that holds a few tapes silo – library that holds thousands of tapes A disk-resident 

file can be archived to tape for low cost storage; the computer can stage it back into disk storage 

for active use  

Operating System Support  

Major OS jobs are to manage physical devices and to present a virtual machine abstraction to 

applications For hard disks, the OS provides two abstraction: Raw device – an array of data 

blocks File system – the OS queues and schedules the interleaved requests from several 

applications  

Application Interface  

Most OSs handle removable disks almost exactly like fixed disks — a new cartridge is formatted 

and an empty file system is generated on the disk Tapes are resented as a raw storage medium, 

i.e., and application does not open a file on the tape, it opens the whole tape drive as a raw device 

Usually the tape drive is reserved for the exclusive use of that application Since the OS does not 

provide file system services, the application must decide how to use the array of blocks Since 

every application makes up its own rules for how to organize a tape, a tape full of data can 

generally only be used by the program that created it  

Tape Drives  

The basic operations for a tape drive differ from those of a disk drive locate() positions the tape 

to a specific logical block, not an entire track (corresponds to seek()) The read position() 

operation returns the logical block number where the tape head is The space() operation enables 

relative motion Tape drives are “append-only” devices; updating a block in the middle of the 

tape also effectively erases everything beyond that block An EOT mark is placed after a block 

that is written  

 

 



File Naming  

The issue of naming files on removable media is especially difficult when we want to write data 

on a removable cartridge on one computer, and then use the cartridge in another computer 

Contemporary OSs generally leave the name space problem unsolved for removable media, and 

depend on applications and users to figure out how to access and interpret the data Some kinds of 

removable media (e.g., CDs) are so well standardized that all computers use them the same way  

(Hierarchical Storage Management HSM)  

A hierarchical storage system extends the storage hierarchy beyond primary memory and 

secondary storage to incorporate tertiary storage — usually implemented as a jukebox of tapes or 

removable disks Usually incorporate tertiary storage by extending the file system Small and 

frequently used files remain on disk Large, old, inactive files are archived to the jukebox HSM is 

usually found in supercomputing centers and other large installations that have enormous 

volumes of data  

Speed  

Two aspects of speed in tertiary storage are bandwidth and latency Bandwidth is measured in 

bytes per second Sustained bandwidth – average data rate during a large transfer; # of 

bytes/transfer time  Data rate when the data stream is actually flowing Effective bandwidth – 

average over the entire I/O time, including seek() or locate(), and cartridge switching Drive’s 

overall data rate Access latency – amount of time needed to locate data Access time for a disk – 

move the arm to the selected cylinder and wait for the rotational latency; < 35 milliseconds 

Access on tape requires winding the tape reels until the selected block reaches the tape head; tens 

or hundreds of seconds Generally say that random access within a tape cartridge is about a 

thousand times slower than random access on disk The low cost of tertiary storage is a result of 

having many cheap cartridges share a few expensive drives  

A removable library is best devoted to the storage of infrequently used data, because the library 

can only satisfy a relatively small number of I/O requests per hour  

 

Reliability  

A fixed disk drive is likely to be more reliable than a removable disk or tape driven An optical 

cartridge is likely to be more reliable than a magnetic disk or tape A head crash in a fixed hard 

disk generally destroys the data, whereas the failure of a tape drive or optical disk drive often 

leaves the data cartridge  unharmed  

 



Cost  

Main memory is much more expensive than disk storage The cost per megabyte of hard disk 

storage is competitive with magnetic tape if only one tape is used per drive    The cheapest tape 

drives and the cheapest disk drives have had about the same storage capacity over the years 

Tertiary storage gives a cost savings only when the number of cartridges is considerably larger 

than the number of drives 


